【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)C′處;作∠BPC′的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】D
【解析】解:如圖,連接DE,∵△PC′D是△PCD沿PD折疊得到,
∴∠CPD=∠C′PD,
∵PE平分∠BPC′,
∴∠BPE=∠C′PE,
∴∠EPC′+∠DPC′= ×180°=90°,
∴△DPE是直角三角形,
∵BP=x,BE=y,AB=3,BC=5,
∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,
在Rt△BEP中,PE2=BP2+BE2=x2+y2
在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52 ,
在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32 ,
在Rt△PDE中,DE2=PE2+PD2
則(3﹣y)2+52=x2+y2+(5﹣x)2+32 ,
整理得,﹣6y=2x2﹣10x,
所以y=﹣ x2+ x(0<x<5),
縱觀各選項(xiàng),只有D選項(xiàng)符合.
故選:D.

連接DE,根據(jù)折疊的性質(zhì)可得∠CPD=∠C′PD,再根據(jù)角平分線的定義可得∠BPE=∠C′PE,然后證明∠DPE=90°,從而得到△DPE是直角三角形,再分別表示出AE、CP的長(zhǎng)度,然后利用勾股定理進(jìn)行列式整理即可得到y(tǒng)與x的函數(shù)關(guān)系式,根據(jù)函數(shù)所對(duì)應(yīng)的圖象即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)畢業(yè)生小王響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,利用銀行小額無息貸款開辦了一家飾品店.該店購(gòu)進(jìn)一種今年新上市的飾品進(jìn)行銷售,飾品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元,每月可賣出300件.市場(chǎng)調(diào)查反映:調(diào)整價(jià)格時(shí),售價(jià)每漲1元每月要少賣10件;售價(jià)每下降1元每月要多賣20件.為了獲得更大的利潤(rùn),現(xiàn)將飾品售價(jià)調(diào)整為60+x(元/件)(x>0即售價(jià)上漲,x<0即售價(jià)下降),每月飾品銷量為y(件),月利潤(rùn)為w(元).
(1)
直接寫出yx之間的函數(shù)關(guān)系式;
(2)如何確定銷售價(jià)格才能使月利潤(rùn)最大?求最大月利潤(rùn);
(3)為了使每月利潤(rùn)不少于6000元應(yīng)如何控制銷售價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2與坐標(biāo)軸交于A、B、C三點(diǎn),其中B(4,0)、C(﹣2,0),連接AB、AC,在第一象限內(nèi)的拋物線上有一動(dòng)點(diǎn)D,過D作DE⊥x軸,垂足為E,交AB于點(diǎn)F.

(1)求此拋物線的解析式;
(2)在DE上作點(diǎn)G,使G點(diǎn)與D點(diǎn)關(guān)于F點(diǎn)對(duì)稱,以G為圓心,GD為半徑作圓,當(dāng)⊙G與其中一條坐標(biāo)軸相切時(shí),求G點(diǎn)的橫坐標(biāo);
(3)過D點(diǎn)作直線DH∥AC交AB于H,當(dāng)△DHF的面積最大時(shí),在拋物線和直線AB上分別取M、N兩點(diǎn),并使D、H、M、N四點(diǎn)組成平行四邊形,請(qǐng)你直接寫出符合要求的M、N兩點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一條直線過點(diǎn)(0,4),且與拋物線y= x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是﹣2.

(1)求這條直線的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo).
(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由.
(3)過線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(2a﹣b)2﹣2b(b﹣2a)
(2)(x﹣ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖①是某電腦液晶顯示器的側(cè)面圖,顯示屏AO可以繞點(diǎn)O旋轉(zhuǎn)一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(shí)(如圖②),人觀看屏幕最舒適.此時(shí)測(cè)得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長(zhǎng)度.(結(jié)果精確到1cm)(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100 , 則3M=3+32+33+34+…+3101 , 因此,3M﹣M=3101﹣1,所以M= ,即1+3+32+33+…+3100= ,仿照以上推理計(jì)算:1+5+52+53+…+52015的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a、b、c是常數(shù),且a≠0)的圖象如圖所示,下列結(jié)論錯(cuò)誤的是(
A.4ac<b2
B.abc<0
C.b+c>3a
D.a<b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了在九月份迎接高一年級(jí)的新生,決定將學(xué)生公寓樓重新裝修,現(xiàn)學(xué)校招用了甲、乙兩個(gè)工程隊(duì).若兩隊(duì)合作,8天就可以完成該項(xiàng)工程;若由甲隊(duì)先單獨(dú)做3天后,剩余部分由乙隊(duì)單獨(dú)做需要18天才能完成.
(1)求甲、乙兩隊(duì)工作效率分別是多少?
(2)甲隊(duì)每天工資3000元,乙隊(duì)每天工資1400元,學(xué)校要求在12天內(nèi)將學(xué)生公寓樓裝修完成,若完成該工程甲隊(duì)工作m天,乙隊(duì)工作n天,求學(xué)校需支付的總工資w(元)與甲隊(duì)工作天數(shù)m(天)的函數(shù)關(guān)系式,并求出m的取值范圍及w的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案