【題目】如圖,拋物線y=x2+bx+c(b、c為常數(shù))與x軸相交于點(diǎn)A(﹣1,0)、B(3,0),與y軸相交于點(diǎn)C,其對(duì)稱軸與x軸相交于點(diǎn)D,作直線BC.
(1)求拋物線的解析式.
(2)設(shè)點(diǎn)P為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn).
①如圖①,若點(diǎn)P為拋物線的頂點(diǎn),求△PBC的面積.
②是否存在點(diǎn)P使△PBC的面積為6?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)
解:∵拋物線y=x2+bx+c(b、c為常數(shù))與x軸相交于點(diǎn)A(﹣1,0)、B(3,0),
∴ ,解得 ,
∴拋物線解析式為y=x2﹣2x﹣3
(2)
解:①∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴P(1,4),且C(0,﹣3),
設(shè)直線BC解析式為y=kx+m,則有 ,解得 ,
∴直線BC解析式為y=x﹣3,
設(shè)對(duì)稱軸交BC于點(diǎn)E,如圖1,
則E(1,﹣2),
∴PE=﹣2﹣(﹣4)=2,
∴S△PBC= PEOB= ×3×2=3;
②設(shè)P(1,t),由①可知E(1,﹣2),
∴PE=|t+2|,
∴S△PBC= OBPE= |t+2|,
∴ |t+2|=6,解得t=2或t=﹣6,
∴P點(diǎn)坐標(biāo)為(1,2)或(1,﹣6),
即存在滿足條件的點(diǎn)P,其坐標(biāo)為(1,2)或(1,﹣6)
【解析】(1)把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式,可求得b、c的值,可求得拋物線解析式;(2)①由拋物線解析式可求得P、C的坐標(biāo),可求得直線BC解析式,設(shè)對(duì)稱軸交直線BC于點(diǎn)E,則可求得E點(diǎn)坐標(biāo),可求得PE的長,則可求得△PBC的面積;②設(shè)P(1,t),則可用t表示出△PBC的面積,可得到t的方程,則可求得P點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1、A2、A3、…、An在x軸上,且OA1=A1A2=A2A3═An﹣1An=1,分別過點(diǎn)A1、A2、A3、…、An作x軸的垂線,交反比例函數(shù)y= (x>0)的圖象于點(diǎn)B1、B2、B3、…、Bn , 過點(diǎn)B2作B2P1⊥A1B1于點(diǎn)P1 , 過點(diǎn)B3作B3P2⊥A2B2于點(diǎn)P2 , …,若記△B1P1B2的面積為S1 , △B2P2B3的面積為S2 , …,△BnPnBn+1的面積為Sn , 則S1+S2+…+S2017= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒3°的速度沿順時(shí)針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,OM恰好平分∠BOC.①求t的值;②此時(shí)ON是否平分∠AOC?請(qǐng)說明理由;
(2)在(1)問的基礎(chǔ)上,若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒6°的速度沿順時(shí)針方向旋轉(zhuǎn)一周,如圖3,那么經(jīng)過多長時(shí)間OC平分∠MON?請(qǐng)說明理由;
(3)在(2)問的基礎(chǔ)上,經(jīng)過多長時(shí)間OC平分∠MOB?請(qǐng)畫圖并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)樓房附近有一個(gè)斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點(diǎn)處觀察點(diǎn)A的仰角為60°,已知坡角為30°,你能求出樓房AB的高度嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點(diǎn),CD=4,則線段DF的長度為( )
A.
B.4
C.
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售甲,乙兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(萬元/套) | 1.5 | 1.2 |
售價(jià)(萬元/套) | 1.65 | 1.4 |
該商場計(jì)劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元.
(毛利潤=(售價(jià) 進(jìn)價(jià))×銷售量)
(1)該商場計(jì)劃購進(jìn)甲,乙兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)研,該商場決定在原計(jì)劃的基礎(chǔ)上,減少甲種教學(xué)設(shè)備的購進(jìn)數(shù)量,增加乙種教學(xué)設(shè)備的購進(jìn)數(shù)量,已知乙種教學(xué)設(shè)備增加的數(shù)量是甲種教學(xué)設(shè)備減少數(shù)量的1.5倍.若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過69萬元,問甲種教學(xué)設(shè)備購進(jìn)數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車從A開往360km外的B,全程的前一部分為高速公路,后一部分為普通公路.若汽車在高速公路和普通公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )
A.汽車在高速公路上的行駛速度為100km/h
B.普通公路總長為90km
C.汽車在普通公路上的行駛速度為60km/h
D.汽車出發(fā)后4h到B地
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com