【題目】如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點,CD=4,則線段DF的長度為( )
A.
B.4
C.
D.4
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象與x、y軸分別交于點A(2,0),B(0,4).
(1)求該函數(shù)的解析式;
(2)O為坐標原點,設OA、AB的中點分別為C、D,P為OB上一動點,求PC+PD的最小值,并求取得最小值時P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c(b、c為常數(shù))與x軸相交于點A(﹣1,0)、B(3,0),與y軸相交于點C,其對稱軸與x軸相交于點D,作直線BC.
(1)求拋物線的解析式.
(2)設點P為拋物線對稱軸上的一個動點.
①如圖①,若點P為拋物線的頂點,求△PBC的面積.
②是否存在點P使△PBC的面積為6?若存在,求出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年中考前,張老師為了解全市初三男生體育考試項目的選擇情況(每人限選一項),在全市范圍內(nèi)隨機調查了部分初三男生,將調查結果分成五類:A.推實心球(2kg);B.立定跳遠;C.半場運球;D.跳繩;E.其他.并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)假定全市初三畢業(yè)學生中有32000名男生,試估計全市初三男生中選半場運球的人數(shù)有多少人?
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B.立定跳遠;C.半場運球;D.跳繩中各選一項,同時選半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班畢業(yè)晚會設計了即興表演節(jié)目的摸球游戲,在一個不透明的盒子里裝有4個分別標有數(shù)字1、2、3、4的乒乓球,這些球除數(shù)字外,其它完全相同.晚會上每位同學必須且只能做一次摸球游戲.游戲規(guī)則是:從盒子里隨機摸出一個球,放回攪勻后,再摸出一個球,若第二次摸出的球上的數(shù)字小于第一次摸出的球上的數(shù)字,就要給大家即興表演一個節(jié)目.
(1)參加晚會的同學性別比例如圖,女生有18人,則參加晚會的學生共有多少人;
(2)用列表法或樹形圖法求出晚會的某位同學即興表演節(jié)目的概率;
(3)估計本次晚會上有多少名同學即興表演節(jié)目?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)開展“節(jié)約用水,從我做起”活動,下表是從該小區(qū)抽取的10個家庭,8月份比7月份節(jié)約用水情況統(tǒng)計:
節(jié)水量(m3) | 0.2 | 0.3 | 0.4 | 0.5 |
家庭數(shù)(個) | 1 | 2 | 3 | 4 |
那么這10個家庭8月份比7月份的節(jié)水量的平均數(shù)是( )
A.0.5m3
B.0.4m3
C.0.35m3
D.0.3m3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com