【題目】(探索發(fā)現(xiàn))

如圖①,是一張直角三角形紙片,,小明想從中剪出一個以為內角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當沿著中位線、剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為_____________

(拓展應用)

如圖②,在中,邊上的高,矩形的頂點分別在邊、上,頂點、在邊上,則矩形面積的最大值為_________.(用含的代數(shù)式表示)

(靈活應用)

如圖③,有一塊缺角矩形,,,,小明從中剪出了一個面積最大的矩形(為所剪出矩形的內角),求該矩形的面積.

(實際應用)

如圖④,現(xiàn)有一塊四邊形的木板余料,經(jīng)測量,,且,,木匠徐師傅從這塊余料中裁出了頂點在邊上且面積最大的矩形,求該矩形的面積.

【答案】【探索發(fā)現(xiàn)】;【拓展應用】;【靈活應用】720;【實際應用】2205cm2

【解析】

(1)【探索發(fā)現(xiàn)】:由中位線知EF=BC、ED=AB、由 可得結論;
(2)【拓展應用】:設PN=b,證明APN∽△ABC,表示PQ的長,根據(jù)矩形的面積公式得:S=bPQ=+bh,根據(jù)二次函數(shù)求最值即可;
(3)【靈活應用】:添加如圖1輔助線,取BF中點IFG的中點K,由矩形性質知AE=EH=20、CD=DH=16,分別證AEF≌△HED、CDG≌△HDEAF=DH=16、CG=HE=20,從而判斷出中位線IK的兩端點在線段ABDE上,利用【探索發(fā)現(xiàn)】結論解答即可;
(4)【實際應用】:延長BA、CD交于點E,過點EEHBC于點H,由tanBtanCBHCH、EH的長,繼而求得BECE的長,可判斷中位線PQ的兩端點在線段AB、CD上,利用【拓展應用】結論解答可得.

(1)【探索發(fā)現(xiàn)】:設EF=x,ED=y
EF、EDABC中位線,
EDABEFBC,EF=BCED=AB,
AB=2ED=2y,BC=2EF=2x
又∠B=90°,
∴四邊形FEDB是矩形,

故答案為:;
(2)【拓展應用】:設PN=b,
PNBC
∴△APN∽△ABC,

BC=a,BC邊上的高AD=h
,PQ=
S=bPQ=+bh,
S的最大值為: ;
則矩形PQMN面積的最大值為
故答案為:;

(3)【靈活應用】:如圖1,延長BA、DE交于點F,延長BCED交于點G,延長AE、CD交于點H,取BF中點I,FG的中點K,

由題意知四邊形ABCH是矩形,
AB=32,BC=40,AE=20CD=16,
EH=20DH=16,
AE=EH、CD=DH,
在△AEF和△HED中,
,
∴△AEF≌△HEDASA),
AF=DH=16,
同理△CDG≌△HDE,
CG=HE=20,
BI==24,
BI=2432
∴中位線IK的兩端點在線段ABDE上,
過點KKLBC于點L,
由【探索發(fā)現(xiàn)】知矩形的最大面積為×BGBF=×40+20×32+16=720,
答:該矩形的面積為720;

(4)【實際應用】:如圖2,延長BA、CD交于點E,過點EEHBC于點H,


tanB=,
EH=4x,BH=3x,
tanC=2=
CH=2x,
BC=BH+CH=105=3x+2x,x=21,
BH=63,CH=42,EH=84
由勾股定理得:BE=,
AB=60,
AE=45,
BE的中點Q在線段AB上,
CD=70,
CE的中點P在線段CD上,
∴中位線PQ的兩端點在線段AB、CD上,
由【拓展應用】知,矩形PQMN的最大面積為BCEH=×105×84=2205cm2
答:該矩形的面積為2205cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ymx+nm≠0)的圖象與反比例函數(shù)k≠0)的圖象交于第一、三象限內的A、B兩點,與y軸交于點C,過點BBMx軸,垂足為MBMOM,OB,點A的縱坐標為4

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)連接AO,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB26PAB(不與點A、B重合)的任一點,點C、DO上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABx軸交于點A1,0),與y軸交于點B0,-2).

1)求直線AB的解析式;

2)直線AB上是否存在點C,使△BOC的面積為2?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明想用鏡子測量一棵松樹的高度,但因樹旁有一條河,不能測量鏡子與樹之間的距離,于是他兩次利用鏡子,如圖所示,第一次他把鏡子放在C點,人在F點時正好在鏡子中看到樹尖A;第二次把鏡子放在D點,人在G點正好看到樹尖A.已知小明的眼睛距離地面1.70m,量得CD12m,CF1.8m,DH3.8m.請你求出松樹的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標有數(shù)1,2,34的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機摸出一個小球記下數(shù)為x,小穎在剩下的3個球中隨機摸出一個小球記下數(shù)為y,這樣確定了點P(x,y),請用“列表法”或“樹狀圖法”求點P(x,y)在函數(shù)y=-x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的頂點,,若將先沿軸進行第一次對稱變換,所得圖形沿軸進行第二次對稱變換,軸對稱變換的對稱軸遵循軸、軸、軸、軸…的規(guī)律進行,則經(jīng)過第2018次變換后,頂點坐標為()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是反比例函數(shù)的圖象,點,分別在圖象的兩支上,以為對角線作矩形軸.

1)當線段過原點時,分別寫出的一個等量關系式;

2)當兩點在直線上時,求矩形的周長;

3)當時,探究的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】詩詞是我國古代文化中的瑰寶,某市教育主管部門為了解本市初中生對詩詞的學習情況,舉辦了一次“中華詩詞”背誦大賽,隨機抽取了部分同學的成績(x為整數(shù),總分100),繪制了如下尚不完整的統(tǒng)計圖表.

組別

成績分組(單位:分)

頻數(shù)

A

50x60

40

B

60x70

a

C

70x80

90

D

80x90

b

E

90x100

100

合計

c

根據(jù)以上信息解答下列問題:

(1)統(tǒng)計表中a   ,b   ,c   ;

(2)扇形統(tǒng)計圖中,m的值為   ,“E”所對應的圓心角的度數(shù)是    ();

(3)若參加本次大賽的同學共有4000人,請你估計成績在80分及以上的學生大約有多少人?

查看答案和解析>>

同步練習冊答案