【題目】如圖,在AOB中,AOB90°,OA6,OB8,動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t≤5),以P為圓心,PA長為半徑的PABOA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、CQ

當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),求t的值;

ACQ是等腰三角形,求t的值;

P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.

【答案】(1) ;(2) 或者或者.;(3) 或者

【解析】

(1)點(diǎn)Q與點(diǎn)D重合時(shí),先證明 ,得到 ,利用平行線分線段成比例,找出AD的長,利用OQ+DA=OA,求出t的值.

(2)分三種情況進(jìn)行討論,AQ=AC;QC=CA;QC=QA,利用等腰三角形性質(zhì)和三角形相似求出.

(3)一個(gè)交點(diǎn),分情況討論,當(dāng)圓PQC相切的時(shí)候,以及點(diǎn)QD重合的時(shí)候進(jìn)行討論,便可找出t的取值范圍.

解: CA是直徑,AOB90°

AOB中,AOB90°,OA6OB8中.

當(dāng)秒時(shí),點(diǎn)Q與點(diǎn)D重合.

2)若ACQ是等腰三角形時(shí),分三種情況討論.

當(dāng)AQ=AC時(shí),即AC=AQ=2t,OQ=t

即:

當(dāng)QC=CA時(shí),即QC=CA=2t,由(1)知

即:

當(dāng)QC=QA時(shí),過點(diǎn)Q,AE=t,AQ=6-t

即:

綜上所述,當(dāng)ACQ是等腰三角形時(shí),或者或者

3)當(dāng)QC與圓P相切時(shí),

即:

解得:

當(dāng) 時(shí),圓PQC只有一個(gè)交點(diǎn).

當(dāng) 時(shí),由(1)知:

當(dāng) 時(shí),圓PQC只有一個(gè)交點(diǎn).

故:當(dāng)圓PQC只有 一個(gè)交點(diǎn)時(shí),t的范圍:或者

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,是第一象限內(nèi)任意一點(diǎn),連接 ,若,則就叫做點(diǎn)的“雙角坐標(biāo)”.例如:點(diǎn)的“雙角坐標(biāo)”為.若點(diǎn)軸的距離為,則的最小值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是半圓的直徑,點(diǎn)是半圓上的一個(gè)動(dòng)點(diǎn),的角平分線交圓弧于點(diǎn),過點(diǎn)于點(diǎn)

1)求證:是半圓的切線;

2)填空:,則__________;

連接、,當(dāng)的度數(shù)為__________時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著技術(shù)的發(fā)展,人們對(duì)各類產(chǎn)品的使用充滿期待.某公司計(jì)劃在某地區(qū)銷售第一款產(chǎn)品,根據(jù)市場分析,該產(chǎn)品的銷售價(jià)格將隨銷售周期的變化而變化.設(shè)該產(chǎn)品在第為正整數(shù))個(gè)銷售周期每臺(tái)的銷售價(jià)格為元,之間滿足如圖所示的一次函數(shù)關(guān)系.

1)求之間的關(guān)系式;

2)設(shè)該產(chǎn)品在第個(gè)銷售周期的銷售數(shù)量為(萬臺(tái)),的關(guān)系可用來描述.根據(jù)以上信息,試問:哪個(gè)銷售周期的銷售收入最大?此時(shí)該產(chǎn)品每臺(tái)的銷售價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識(shí)為很強(qiáng)的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為淡薄”、“一般的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有 名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場開業(yè),為了活躍氣氛,用紅、黃、藍(lán)三色均分的轉(zhuǎn)盤設(shè)計(jì)了兩種抽獎(jiǎng)方案,凡來商場消費(fèi)的顧客都可以選擇一種抽獎(jiǎng)方案進(jìn)行抽獎(jiǎng)(若指針恰好停在分割線上則重轉(zhuǎn)).

方案一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,指針落在紅色區(qū)域可領(lǐng)取一份獎(jiǎng)品;

方案二:轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,指針落在不同顏色區(qū)域可領(lǐng)取一份獎(jiǎng)品.

1)若選擇方案一,則可領(lǐng)取一份獎(jiǎng)品的概率是   ;

2)選擇哪個(gè)方案可以使領(lǐng)取一份獎(jiǎng)品的可能性更大?請(qǐng)用列表法或畫樹狀圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線yax2+bx+x軸分別交于點(diǎn)A(﹣10),B3,0),點(diǎn)C是頂點(diǎn).

1)求拋物線的解析式;

2)如圖1,線段DE是射線AC上的一條動(dòng)線段(點(diǎn)D在點(diǎn)E的下方),且DE2,點(diǎn)D從點(diǎn)A出發(fā)沿著射線AC的方向以每秒2個(gè)單位長度的速度運(yùn)動(dòng),以DE為一邊在AC上方作等腰RtDEF,其中∠EDF90°,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

點(diǎn)D的坐標(biāo)是   (用含t的代數(shù)式表示);

當(dāng)直線BC與△DEF有交點(diǎn)時(shí),請(qǐng)求出t的取值范圍;

3)如圖2,點(diǎn)P是△ABC內(nèi)一動(dòng)點(diǎn),BP,點(diǎn)MN分別是AB,BC邊上的兩個(gè)動(dòng)點(diǎn),當(dāng)△PMN的周長最小時(shí),請(qǐng)直接寫出四邊形PNBM面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,ADBC相交于點(diǎn)E,AF平分∠BAD,交BC于點(diǎn)F,交CD的延長線于點(diǎn)G

1)若∠G=29°,求∠ADC的度數(shù);

2)若點(diǎn)FBC的中點(diǎn),求證:AB=AD+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢(shì)頭,各地教育部門在推遲各級(jí)學(xué)校開學(xué)時(shí)間的同時(shí)提出聽課不停學(xué)的要求,各地學(xué)校也都開展了遠(yuǎn)程網(wǎng)絡(luò)教學(xué),某校集中為學(xué)生提供四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答疑、在線討論,為了了解學(xué)生的需求,該校通過網(wǎng)絡(luò)對(duì)本校部分學(xué)生進(jìn)行了你對(duì)哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖。

1)本次調(diào)查的人數(shù)有多少人?

2)請(qǐng)補(bǔ)全條形圖;

3)請(qǐng)求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠(yuǎn)程網(wǎng)絡(luò)教學(xué)活動(dòng),請(qǐng)求出小寧和小娟選擇同一種學(xué)習(xí)方式的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案