【題目】已知在平面直角坐標(biāo)系中,點的坐標(biāo)為,是第一象限內(nèi)任意一點,連接 、,若,,則就叫做點的“雙角坐標(biāo)”.例如:點的“雙角坐標(biāo)”為.若點到軸的距離為,則的最小值為___.
【答案】
【解析】
先根據(jù)三角形的內(nèi)角和定理將所求問題轉(zhuǎn)為求的最大值,再取線段OA的中點B,以B為圓心,OB長為半徑畫圓,如圖(見解析),然后利用圓周角定理和三角形的外角性質(zhì)即可得.
由三角形的內(nèi)角和定理得:
則可將所求問題轉(zhuǎn)為求的最大值
由題意得,點P在直線位于第一象限的圖象上
如圖,取線段OA的中點B,以B為圓心,OB長為半徑畫圓
則圓B與直線相切,設(shè)切點為點C
連接OC、AC、OP、AP,OP與圓B交于點D,連接AD
由圓周角定理可知,
由三角形的外角性質(zhì)可知,,即
因此,,當(dāng)且僅當(dāng)點P與點C重合,等號成立
即的最大值為
則的最小值為
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點A時,甲還需 分鐘到達(dá)終點B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為,米,且A、B、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當(dāng)點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形的周長為60.
(1)當(dāng)該矩形的面積為200時,求它的邊長;
(2)請表示出這個矩形的面積與其一邊長的關(guān)系,并求出當(dāng)矩形面積取得最大值時,矩形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線頂點坐標(biāo)為,且與軸交于原點和點.對稱軸與軸交點為.
(1)求拋物線的解析式;
(2)若點在拋物線上,且橫坐標(biāo)為,在拋物線對稱軸上找一點,使得與的差最大,求此時點的坐標(biāo);
(3)若點在拋物線的對稱軸上,且縱坐標(biāo)為.探究:在拋物線上是否存在點使得四點共圓?若存在求出點坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了做好新冠肺炎疫情期間開學(xué)工作,我區(qū)某中學(xué)用藥熏消毒法對教室進(jìn)行消毒.已知一瓶藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:
(1)寫出傾倒一瓶藥物后,從藥物釋放開始,y與x之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量不低于8毫克時,消毒有效,那么傾倒一瓶藥物后,從藥物釋放開始,有效消毒時間是多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,OA=6,OB=8,動點Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設(shè)運動時間為t秒(0<t≤5),以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結(jié)CD、CQ.
⑴ 當(dāng)點Q與點D重合時,求t的值;
⑵ 若△ACQ是等腰三角形,求t的值;
⑶ 若⊙P與線段QC只有一個公共點,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com