【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)當(dāng)⊙Q經(jīng)過(guò)點(diǎn)A時(shí),求⊙P被OB截得的弦長(zhǎng).
(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
【答案】(1);(2);(3)0<t≤或<t≤5.
【解析】試題分析:(1)由題意知CD⊥OA,所以△ACD∽△ABO,利用對(duì)應(yīng)邊的比求出AD的長(zhǎng)度,若Q與D重合時(shí),則,AD+OQ=OA,列出方程即可求出t的值;
(2)由于0<t≤5,當(dāng)Q經(jīng)過(guò)A點(diǎn)時(shí),OQ=4,此時(shí)用時(shí)為4s,過(guò)點(diǎn)P作PE⊥OB于點(diǎn)E,利用垂徑定理即可求出⊙P被OB截得的弦長(zhǎng);
(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),分以下兩種情況,①當(dāng)QC與⊙P相切時(shí),計(jì)算出此時(shí)的時(shí)間;②當(dāng)Q與D重合時(shí),計(jì)算出此時(shí)的時(shí)間;由以上兩種情況即可得出t的取值范圍.
試題解析:(1)∵OA=6,OB=8,∴由勾股定理可求得:AB=10,由題意知:OQ=AP=t,∴AC=2t,∵AC是⊙P的直徑,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴,∴AD= ,當(dāng)Q與D重合時(shí),AD+OQ=OA,∴,∴t=;
(2)當(dāng)⊙Q經(jīng)過(guò)A點(diǎn)時(shí),如圖1,OQ=OA﹣QA=4,∴t==4s,∴PA=4,∴BP=AB﹣PA=6,過(guò)點(diǎn)P作PE⊥OB于點(diǎn)E,⊙P與OB相交于點(diǎn)F、G,連接PF,∴PE∥OA,∴△PEB∽△AOB,∴,∴PE=,∴由勾股定理可求得:EF=,由垂徑定理可求知:FG=2EF=;
(3)當(dāng)QC與⊙P相切時(shí),如圖2,此時(shí)∠QCA=90°,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴,∴,∴t=,∴當(dāng)0<t≤時(shí),⊙P與QC只有一個(gè)交點(diǎn);
當(dāng)QC⊥OA時(shí),此時(shí)Q與D重合,由(1)可知:t=,∴當(dāng)<t≤5時(shí),⊙P與QC只有一個(gè)交點(diǎn),綜上所述,當(dāng),⊙P與QC只有一個(gè)交點(diǎn),t的取值范圍為:0<t≤或<t≤5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)實(shí)數(shù)的平方根與它的立方根相等,則這個(gè)數(shù)是
A. 0B. 1C. 0或1D. 0或±1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)有理數(shù)的積是正數(shù),和也是正數(shù),那么這兩個(gè)有理數(shù)( )
A.同號(hào),且均為負(fù)數(shù);
B.異號(hào),且正數(shù)的絕對(duì)值比負(fù)數(shù)的絕對(duì)值大;
C.同號(hào),且均為正數(shù);
D.異號(hào),且負(fù)數(shù)的絕對(duì)值比正數(shù)的絕對(duì)值大;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】∠1與∠2互余且相等,∠1與∠3是鄰補(bǔ)角,則∠3的大小是( )
A. 30°B. 105 °
C. 120°D. 135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知兩點(diǎn)坐標(biāo)A(m-1,3),B(1, m2-1)若AB∥x軸,則m的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD平分∠BAC,AB=AC,連接BC,交AD于點(diǎn)E,下列說(shuō)法正確的有( )
①∠BAC=∠ACB;②S四邊形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明準(zhǔn)備進(jìn)行如下操作試驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com