【題目】如圖,在直角坐標(biāo)系xOy中,已知點(diǎn)A(0,1),點(diǎn)P在線段OA上,以AP為半徑的⊙P周長(zhǎng)為1.點(diǎn)MA開始沿⊙P按逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng),射線AMx軸于點(diǎn)N(n,0),設(shè)點(diǎn)M轉(zhuǎn)過(guò)的路程為m(0m1).

(1)當(dāng)m=時(shí),n=_____;

(2)隨著點(diǎn)M的轉(zhuǎn)動(dòng),當(dāng)m變化到時(shí),點(diǎn)N相應(yīng)移動(dòng)的路徑長(zhǎng)為_____

【答案】 -1

【解析】試題解析:(1)當(dāng)m=時(shí),連接PM,如圖1,

則有∠APM=×360°=90°.

PA=PM,∴∠PAM=PMA=45°.

NO=AO=1,

n=-1.

(2)①當(dāng)m=時(shí),連接PM,如圖2,

APM=×360°=120°.

PA=PM,∴∠PAM=PMA=30°.

RtAON中,NO=AOtanOAN=1×=;

②當(dāng)m=時(shí),連接PM,如圖3,

APM=360°-×360°=120°,

同理可得:NO=

綜合①、②可得:點(diǎn)N相應(yīng)移動(dòng)的路經(jīng)長(zhǎng)為+=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)分別為兩條平行線上的一點(diǎn),.

1)如圖1,直接寫出之間的數(shù)量關(guān)系;

2)如圖2,連接,過(guò)點(diǎn)分別作的角平分線交于點(diǎn),.

①求的度數(shù);

②探究的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,同時(shí)將點(diǎn)A(﹣1,0)、B3,0)向上平移2個(gè)單位長(zhǎng)度再向右平移1個(gè)單位長(zhǎng)度,分別得到A、B的對(duì)應(yīng)點(diǎn)CD.連接AC,BD

1)求點(diǎn)CD的坐標(biāo),并描出A、B、C、D點(diǎn),求四邊形ABDC面積;

2)在坐標(biāo)軸上是否存在點(diǎn)P,連接PA、PC使SPACS四邊形ABCD?若存在,求點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB90°,CDABECDAB,DABC延長(zhǎng)線交于F

1)若AC12,∠ABC30°,求DE的長(zhǎng);

2)若BC2AC,求證:DAFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)E是線段BO上的一個(gè)動(dòng)點(diǎn)(可以與O、B重合),點(diǎn)F為射線DC上一點(diǎn),∠ABC=60,∠AEF=120AB=5,則EF的取值范圍是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三角形(記作)在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是,,,先將向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到.

(1)在圖中畫出;

(2)點(diǎn),的坐標(biāo)分別為______、______;

(3)若軸有一點(diǎn),使面積相等,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】天水某公交公司將淘汰某一條線路上冒黑煙較嚴(yán)重的公交車,計(jì)劃購(gòu)買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬(wàn)元,

1)求購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?

2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過(guò)1220萬(wàn)元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,第一象限內(nèi)的點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)Cy軸上,BCx軸,點(diǎn)A的坐標(biāo)為(24),且tanACB=

求:(1)反比例函數(shù)的解析式;

2)點(diǎn)C的坐標(biāo);

3ABC的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案