【題目】如圖所示的一塊地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求這塊地的面積.

【答案】這塊土地的面積為24m2

【解析】連接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面積減去△ACD的面積就是所求的面積.

解:連接AC

在Rt△ACD中,AD=4,CD=3,

∴AC 2 =AD 2 +CD 2 =4 2 +3 2 =25,

又∵AC>0,

AC=5.

又∵BC=12,AB=13,

AC 2 +BC 2 =5 2 +12 2 =169,

又∵AB 2 =169,

AC 2 +BC 2 =AB 2 ,

∴△ACB是直角三角形,

∴S =SABC -S △ADC =30-6=24m2

“點睛”考查了直角三角形面積公式以及勾股定理的應(yīng)用,作輔助線是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為某三岔路口交通環(huán)島的簡化模型,在某高峰時刻,單位時間進(jìn)出路口A,B,C的機動車輛數(shù)如圖所示.圖中x1 , x2 , x3分別表示該時段單位時間通過路段AB,BC,CA的機動車輛數(shù)(假設(shè)單位時間內(nèi)在上述路段中同一路段上駛?cè)肱c駛出的車輛數(shù)相等),則有(

A.x1>x2>x3
B.x1>x3>x2
C.x2>x3>x1
D.x3>x2>x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標(biāo)分別為(3,2),(﹣1,﹣1),則兩個正方形的位似中心的坐標(biāo)是 ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,∠B=15°,AB的垂直平分線交BC于點D,交AB于點E,若BD=20cm.求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面四組數(shù)中是勾股數(shù)的一組是( 。

A. 4,5,6 B. 6,8,10 C. 5,11,12 D. 10,20,26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】絕對值小于4的整數(shù)有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)179°﹣72°18′54″
(2)360°÷7(精確到秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為鼓勵居民節(jié)約用水,規(guī)定如下用水收費標(biāo)準(zhǔn):每戶每月的用水量不超過12噸(含12噸)時,水費按a元/噸收費;超過時,不超過12噸(含12噸)時,水費按a元/噸收費;超過時,不超過12噸的部分仍按a元/噸收費,超過的部分按b元/噸(b>a)收費,已知該市小明家今年3月份和4月份的用水量、水費如表所示:

月份

用水量(立方米)

水費(元)

3

28

56

4

20

35.2

(1)求a,b的值;

(2)設(shè)某戶1個月的用水量為x(噸),應(yīng)交水費y(元),求出y與x之間的函數(shù)關(guān)系式;

(3)已知某戶5月份的用水量為18噸,求該戶5月份的水費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一方有難八方支援,某市政府籌集了抗旱必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

(1)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)約運費,該市政府可以調(diào)用甲、乙、丙三種車型參與運送,已知它們的總輛數(shù)為16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?
(3)求出那種方案的運費最?最省是多少元.

查看答案和解析>>

同步練習(xí)冊答案