補(bǔ)全下列各題解題過程.(6分)
如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D,求證DF∥AC.
證明:∵∠1=∠2(已知)
∠2=∠3 ∠1=∠4 ( )
∴∠3=∠4 ( 等量代換 )
∴_DB__∥_____ ( )
∴∠C=∠ABD ( )
∵∠C=∠D ( 已 知 )
∴∠D=∠ABD( )
∴DF∥AC( )
(1)∠ABC,兩直線平行,同位角相等,AB,CD,內(nèi)錯角相等,兩直線平行,(2)對頂角相等,等量代換,DB,CE,內(nèi)錯角相等,兩直線平行,兩直線平行,同位角相等,已知,等量代換,內(nèi)錯角相等,兩直線平行,
解析試題分析:由∠1=∠2推出∠3=∠4,進(jìn)一步推出DB和CE平行,得到∠D和∠ABD相等,即可推出DF和AC平行.
∵∠1=∠2(已知)
∠2=∠3∠1=∠4 ( 對頂角相等)
∴∠3=∠4 ( 等量代換)
∴DB∥CE ( 內(nèi)錯角相等,兩直線平行)
∴∠C=∠ABD ( 兩直線平行,同位角相等。
∵∠C=∠D ( 已知。
∴∠D=∠ABD( 等量代換)
∴DF∥AC( 內(nèi)錯角相等,兩直線平行).
考點:1.平行線的判定與性質(zhì);2.對頂角、鄰補(bǔ)角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知∠ABC,點P在射線BA上,請根據(jù)“同位角相等,兩直線平行”,利用直尺和圓規(guī),過點P作直線PD平行于BC。(保留作圖痕跡,不寫作法。)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com