【題目】如圖,拋物線軸正半軸,軸正半軸分別交于點(diǎn),且點(diǎn)為拋物線的頂點(diǎn).

求拋物線的解析式及點(diǎn)G的坐標(biāo);

點(diǎn)為拋物線上兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)) ,且到對(duì)稱軸的距離分別為個(gè)單位長(zhǎng)度和個(gè)單位長(zhǎng)度,點(diǎn)為拋物線上點(diǎn)之間(含點(diǎn))的一個(gè)動(dòng)點(diǎn),求點(diǎn)的縱坐標(biāo)的取值范圍.

【答案】1,G1,4);(2)﹣21≤≤4.

【解析】

1)根據(jù)c表示出點(diǎn)A的坐標(biāo),把A的坐標(biāo)代入函數(shù)解析式,得到一個(gè)關(guān)于c的一元二次方程,解出c的值,從而求出函數(shù)解析式,求出頂點(diǎn)G的坐標(biāo).

2)根據(jù)函數(shù)解析式求出函數(shù)圖像對(duì)稱軸,根據(jù)點(diǎn)M,N到對(duì)稱軸的距離,判斷出M,N的橫坐標(biāo),進(jìn)一步得出M,N的縱坐標(biāo),求出M,N點(diǎn)的坐標(biāo)后可確定的取值范圍.

解:(1)∵拋物線軸正半軸分別交于點(diǎn)B,

B點(diǎn)坐標(biāo)為(c0),

∵拋物線經(jīng)過點(diǎn)A

∴﹣c2+2c+c=0,

解得c1=0(舍去),c2=3,

∴拋物線的解析式為

=﹣(x12+4

∴拋物線頂點(diǎn)G坐標(biāo)為(1,4).

2)拋物線的對(duì)稱軸為直線x=1,

∵點(diǎn)M,N到對(duì)稱軸的距離分別為3個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度

∴點(diǎn)M的橫坐標(biāo)為﹣24,點(diǎn)N的橫坐標(biāo)為﹣46,

點(diǎn)M的縱坐標(biāo)為﹣5,點(diǎn)N的縱坐標(biāo)為﹣21

又∵點(diǎn)M在點(diǎn)N的左側(cè),

∴當(dāng)M坐標(biāo)為(﹣2,﹣5)時(shí),點(diǎn)N的坐標(biāo)為(6,﹣21),

則﹣21≤≤4

當(dāng)當(dāng)M坐標(biāo)為(4,﹣5)時(shí),點(diǎn)N的坐標(biāo)為(6,﹣21),

則﹣21≤5,

的取值范圍為﹣21≤≤4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),頂點(diǎn)為

1)求點(diǎn)和點(diǎn)的坐標(biāo);

2)定義“雙拋圖形”:直線將拋物線分成兩部分,首先去掉其不含頂點(diǎn)的部分,然后作出拋物線剩余部分關(guān)于直線的對(duì)稱圖形,得到的整個(gè)圖形稱為拋物線關(guān)于直線的“雙拋圖形”(特別地,當(dāng)直線恰好是拋物線的對(duì)稱軸時(shí),得到的“雙拋圖形”不變).

①當(dāng)時(shí),拋物線關(guān)于直線的“雙拋圖形”如圖①所示,直線與“雙拋圖形”有________個(gè)交點(diǎn);

②若拋物線關(guān)于直線的“雙拋圖形”與直線恰好有兩個(gè)交點(diǎn),結(jié)合圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時(shí),統(tǒng)計(jì)中常用各組的組中值代表各組的實(shí)際數(shù)據(jù),把各組的頻數(shù)看作相應(yīng)組中值的權(quán),請(qǐng)你依據(jù)以上知識(shí),解決下面的實(shí)際問題.

為了解5路公共汽車的運(yùn)營情況,公交部門統(tǒng)計(jì)了某天5路公共汽車每個(gè)運(yùn)行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計(jì)圖:

(1)求A組對(duì)應(yīng)扇形圓心角的度數(shù),并寫出這天載客量的中位數(shù)所在的組;

(2)求這天5路公共汽車平均每班的載客量;

(3)如果一個(gè)月按30天計(jì)算,請(qǐng)估計(jì)5路公共汽車一個(gè)月的總載客量,并把結(jié)果用科學(xué)記數(shù)法表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,分別以點(diǎn)為圓心,的長(zhǎng)為半徑作弧,兩弧交于點(diǎn),連接則四邊形的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“4000輛自行車、187個(gè)服務(wù)網(wǎng)點(diǎn)”,某市區(qū)現(xiàn)已實(shí)現(xiàn)公共自行車服務(wù)全覆蓋,為人們的生活帶來了方便。圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A,D,C,E在同一條直線上,CD=30 cm,DF=20 cm,AF=25 cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15 cm,且∠EAB=75°.

(1)求AD的長(zhǎng);

(2)求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
23

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案