【題目】如圖,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)直線BE與AD的位置關(guān)系是 ;BE與AD之間的距離是線段 的長(zhǎng);
(2) 若AD=6cm,BE=2cm.,求BE與AD之間的距離.
【答案】(1)平行;DE;(2)4cm.
【解析】
(1)在同一平面內(nèi),同垂直一條直線的兩條直線相互平行;由兩平行線間的距離定義進(jìn)行填空;
(2)由全等三角形的判定定理AAS推知△CBE≌△ACD.則由全等三角形的性質(zhì)易證BE=CD,EC=AC,則BE與AD之間的距離ED=6﹣2=4 (cm ).
解:(1)∵BE⊥CE,AD⊥CE
∴BE∥AD,即直線BE與AD的位置關(guān)系是:平行;BE與AD之間的距離是線段ED的長(zhǎng)度;故答案為:平行;ED;
(2)∵BE⊥CE,AD⊥CE,∠ACB=90°
∴∠1+∠3=90°,∠2+∠3=90°
∴∠1=∠2,在△CBE與△ACD中
∵∠BEC=∠CDA,∠2=∠1,BC=AC
∴△CBE≌△ACD(AAS)
∴BE=CD,EC=AD
∴BE與AD之間的距離ED=6﹣2=4(cm ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是( )
A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng) D. S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(基礎(chǔ)運(yùn)用)
如圖①所示,直線L:y=x+5與x軸負(fù)半軸,y軸正半軸分別交于A、B兩點(diǎn).
(1)點(diǎn)A坐標(biāo)為 ,S△OAB= ;
(2)如圖②所示,設(shè)Q為AB延長(zhǎng)線上一點(diǎn),作直線OQ,過A、B兩點(diǎn)分別作AM⊥OQ于M,BN⊥OQ于N,①求證:△AOM≌△OBN;②若AM=4,求MN的長(zhǎng);
(思維延伸)直線L:y=mx+5m與x軸負(fù)半軸,y軸正半軸分別交于A、B兩點(diǎn).
(3)當(dāng)m取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動(dòng),分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第 一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點(diǎn),如圖③.問:當(dāng)點(diǎn)B在y軸正半軸上運(yùn)動(dòng)時(shí),試猜想線段PE與線段PF的數(shù)量關(guān)系并證明;
(4)如圖③,當(dāng)m取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動(dòng),以AB為邊在第二象限作等腰直角△ABE,則動(dòng)點(diǎn)E在直線 上運(yùn)動(dòng).(直接寫出直線的表達(dá)式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:E在△ABC的AC邊的延長(zhǎng)線上,D點(diǎn)在AB邊上,DE交BC于點(diǎn)F,DF=EF,BD=CE。求證:△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(3,0),對(duì)稱軸為直線x=1,給出以下結(jié)論:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過點(diǎn)A(2,4)和點(diǎn)B(6,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的解析式;
(2)直接寫出它的開口方向、頂點(diǎn)坐標(biāo);
(3)點(diǎn)(x1,y1),(x2,y2)均在此拋物線上,若x1>x2>4,則y1 ________ y2(填“>”“=”或“<”).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com