【題目】已知:在△ABC中,AC=BC∠ACB=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG

2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.

【答案】解:(1)證明:點(diǎn)DAB中點(diǎn),AC=BC∠ACB=90°,

∴CD⊥AB∠ACD=∠BCD=45°,

∴∠CAD=∠CBD=45°,

∴∠CAE=∠BCG,又BF⊥CE,

∴∠CBG+∠BCF=90°,又∠ACE+∠BCF=90°,

∴∠ACE=∠CBG

∴△AEC≌△CGB,

∴AE=CG,

2BE=CM,

證明:∵CH⊥HM,CD⊥ED,

∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°

∴∠CMA=∠BEC

∵AC=BC,∠ACM=∠CBE=45°,

∴△BCE≌△CAM,

∴BE=CM

【解析】

證明:設(shè)∠ACE=∠1,因?yàn)橹本BF垂直于CE,交CE于點(diǎn)F,所以∠CFB=90°

所以∠ECB+∠CBF=90°.

又因?yàn)?/span>∠1+∠ECB=90°,所以∠1=∠CBF .

因?yàn)?/span>AC="BC," ∠ACB=90°,所以∠A=∠CBA=45°.

又因?yàn)辄c(diǎn)DAB的中點(diǎn),所以∠DCB=45°.

因?yàn)?/span>∠1=∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.

(2)解:CM=BE.證明如下:因?yàn)?/span>∠ACB=90°,所以∠ACH +∠BCF=90°.

因?yàn)?CH⊥AM,即∠CHA=90°,所以 ∠ACH +∠CAH=90°,所以∠BCF=∠CAH.

因?yàn)?CD為等腰直角三角形斜邊上的中線,所以 CD=AD.所以∠ACD=45°.

△CAM△BCE,CA=BC,∠CAH =∠BCF, ∠ACM =∠CBE,

所以 △CAM ≌△BCE,所以CM=BE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)對參加2019年中考的300名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖.

請根據(jù)圖表信息回答下列問題:

(1) __________, __________

(2)將頻數(shù)分布直方圖補(bǔ)充完整;

(3)若視力在4.9以上(4.9)均為正常,據(jù)以上信息估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖中小方格都是邊長為1的正方形,ABCA′B′C′是關(guān)于點(diǎn)G為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形頂點(diǎn)上.

1)畫出位似中心點(diǎn)G;

2)若點(diǎn)A、B在平面直角坐標(biāo)系中的坐標(biāo)分別為(﹣60),(-3,2),點(diǎn)Pm,n)是線段AC上任意一點(diǎn),則點(diǎn)PA′B′C′上的對應(yīng)點(diǎn)P′的坐標(biāo)為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線EF分別與直線AB,CD相交于點(diǎn)F,E,EM平分∠FED,ABCD,H,P分別為直線AB和線段EF上的點(diǎn)。

(1)如圖1HM平分∠BHP,若HPEF,求∠M的度數(shù)。

(2)如圖2,EN平分∠HEFAB于點(diǎn)N,NQEM于點(diǎn)Q,當(dāng)H在直線AB上運(yùn)動(dòng)(不與點(diǎn)F重合)時(shí),探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax+by=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置正確的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1,直線CD經(jīng)過圓心O,交⊙OCD兩點(diǎn),直徑ABCD,點(diǎn)M是直線CD上異于點(diǎn)CO、D的一個(gè)動(dòng)點(diǎn),AM所在的直線交于⊙O于點(diǎn)N,點(diǎn)P是直線CD上另一點(diǎn),且PM=PN

1)當(dāng)點(diǎn)M在⊙O內(nèi)部,如圖一,試判斷PN與⊙O的關(guān)系,并寫出證明過程;

2)當(dāng)點(diǎn)M在⊙O外部,如圖二,其它條件不變時(shí),(1)的結(jié)論是否還成立?請說明理由;

3)當(dāng)點(diǎn)M在⊙O外部,如圖三,∠AMO=15°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B在反比例函數(shù)y=的圖象上,過點(diǎn)A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點(diǎn)C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )

A.2 B.4 C.﹣2 D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時(shí),2BE=DM;無論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無論點(diǎn)M運(yùn)動(dòng)到何處,CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,AB9,NAB上一點(diǎn),且AN3,BC的高線ADBC于點(diǎn)D,MAD上的動(dòng)點(diǎn),連結(jié)BM,MN,則BM+MN的最小值是

A. B. C. D. 4

查看答案和解析>>

同步練習(xí)冊答案