(2012•湘潭)如圖,在?ABCD中,點E在DC上,若EC:AB=2:3,EF=4,則BF=
6
6
分析:先根據(jù)平行四邊形的性質(zhì)得出∠CAB=∠ACD,∠ABE=∠BEC,故可得出△ABF∽△CEF,再由相似三角形的對應(yīng)邊成比例即可得出結(jié)論.
解答:解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠CAB=∠ACD,∠ABE=∠BEC,
∴△ABF∽△CEF,
AB
CE
=
BF
EF
,即
3
2
=
BF
4
,解得BF=6.
故答案為:6.
點評:本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形的判定定理是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,在⊙O中,弦AB∥CD,若∠ABC=40°,則∠BOD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,拋物線y=ax2-
32
x-2(a≠0)
的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設(shè)計一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,△ABC的一邊AB是⊙O的直徑,請你添加一個條件,使BC是⊙O的切線,你所添加的條件為
∠ABC=90°
∠ABC=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,矩形ABCD是供一輛機動車停放的車位示意圖,已知BC=2m,CD=5.4m,∠DCF=30°,請你計算車位所占的寬度EF約為多少米?(
3
≈1.73
,結(jié)果保留兩位有效數(shù)字.)

查看答案和解析>>

同步練習(xí)冊答案