【題目】如圖,在RtABC中,∠ACB=90°,∠A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E,點FAC延長線上的一點,連接DF.

(1)求∠CBE的度數(shù);

(2)若∠F=25°,求證:BEDF.

【答案】1)∠CBD=65°;(2)證明見解析.

【解析】

1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°-∠A=50°,由鄰補角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=65°;
2)先根據(jù)三角形外角的性質(zhì)得出∠CEB=90°-65°=25°,再根據(jù)∠F=25°,即可得出BEDF

解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°

∴∠ABC=90°-A=50°,
∴∠CBD=130°
BE是∠CBD的平分線,
∴∠CBE=CBD=65°;

2)∵∠ACB=90°,∠CBE=65°,
∴∠CEB=90°-65°=25°
又∵∠F=25°,
∴∠F=CEB=25°,
DFBE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從王同學(xué)和李同學(xué)中挑選一人參加縣知識競賽在五次選拔測試中他倆的成績?nèi)缦卤恚?/span>

1

2

3

4

5

王同學(xué)

60

75

100

90

75

李同學(xué)

70

90

100

80

80

根據(jù)上表解答下列問題:

1)完成下表:

姓名

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差

王同學(xué)

80

75

75

_____

李同學(xué)

   

   

   

   

2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是誰若將80分以上(含80分)的成績視為優(yōu)秀,則王同學(xué)、李同學(xué)在這五次測試中的優(yōu)秀率各是多少?

3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認為應(yīng)選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2中,點B為線段AE上一點,△ABC與△BED都是等邊三角形.

(1)如圖1,求證:AD=CE.

(2)如圖2,設(shè)CEAD交于點F,連接BF.

①求證:∠CFA=60°.

②求證:CF+BF=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,下列說法錯誤的是(

A.圖象關(guān)于直線x=1對稱

B.函數(shù)y=ax2+bx+ca≠0)的最小值是﹣4

C﹣13是方程ax2+bx+c=0a≠0)的兩個根

D.當x1時,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖, ABCD于點O,∠1=2,OE平分∠BOF,∠EOB=55°,求∠GOF和∠DOG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某公園一圓形噴水池,水流在各個方向沿形狀相同的拋物線落下,建立如下圖所示的坐標系,如果噴頭所在處A(0,1.25),水流路線最高處M(1,2.25),則該拋物的解析式為__________________________。如果不考慮其他因素,那么水池的半徑至少要______m,才能使噴出的水流不至落到池外.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能簡便計算的簡便計算.

(1)[ +-]×

(2) ÷8+12.5%×

(3)×3.55.5×80%0.8

(4)-)×4×9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:有一個直角三角形ABC,∠C90°AC12,BC5,一條線段PQAB,PQ兩點分別在AC和過點A且垂直于AC的射線AX上運動,問P點運動到離A的距離等于___________時,ΔABC與以AP、Q為頂點的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠AOB90°OE是∠AOB的平分線,POE上一動點,PCPDC、D分別在OAOB上.求證:PCPD

查看答案和解析>>

同步練習(xí)冊答案