拋物線與y軸交于點(diǎn)(0,3).
(1)求拋物線的解析式;(2分)
(2)求拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo);(6分)
(3)① 當(dāng)x取什么值時(shí),y>0 ?
② 當(dāng)x取什么值時(shí),y的值隨x的增大而減?(4分)

(1);(2)(-1,0),(3,0),(0,3);(3)①-1<x<3;②x>1.

解析試題分析:(1)將(0,3)代入求得m,即可得出拋物線的解析式;(2)令y=0,求得與x軸的交點(diǎn)坐標(biāo);令x=0,求得與y軸的交點(diǎn)坐標(biāo);(3)畫出圖象,①當(dāng)y>0時(shí),即圖象在一、二象限內(nèi)的部分;②在對(duì)稱軸的右側(cè),y的值隨x的增大而減小.
試題解析:(1)∵拋物線與y軸交于(0,3)點(diǎn),
,解得m=3.
∴拋物線的解析式為
(2)令y=0,得,解得x=-1或3,
∴拋物線與x軸的交點(diǎn)坐標(biāo)(-1,0),(3,0);
令x=0,得y=3,
∴拋物線與y軸的交點(diǎn)坐標(biāo)(0,3).
(3)根據(jù)對(duì)稱軸為x=1,頂點(diǎn)坐標(biāo)(1,4),作出圖象如圖,則由圖象知:
①當(dāng)-1<x<3時(shí),y>0;②當(dāng)x>1時(shí),y的值隨x的增大而減。

考點(diǎn):1. 曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系;2.拋物線與坐標(biāo)軸的交點(diǎn);3.二次函數(shù)的圖象和性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊長(zhǎng)為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長(zhǎng)方體形狀的包裝盒(A、B、C、D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn))。已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?S最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線過兩點(diǎn)(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點(diǎn)為(1,d).
(1)求拋物線與雙曲線的解析式;
(2)已知點(diǎn)都在雙曲線(x>0)上,它們的橫坐標(biāo)分別為,O為坐標(biāo)原點(diǎn),記,點(diǎn)Q在雙曲線(x<0)上,過Q作QM⊥y軸于M,記。
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司投資新建了一商場(chǎng),共有商鋪30間.據(jù)預(yù)測(cè),當(dāng)每間的年租金定為10萬元時(shí),可全部租出.每間的年租金每增加5000元,少租出商鋪1間.(假設(shè)年租金的增加額均為5000元的整數(shù)倍)該公司要為租出的商鋪每間每年交各種費(fèi)用2萬元,未租出的商鋪每間每年交各種費(fèi)用1萬元.
(1)當(dāng)每間商鋪的年租金定為12萬元時(shí),能租出多少間?年收益多少萬元?
(2)當(dāng)每間商鋪的年租金定為多少萬元時(shí),該公司的年收益最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.

(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

①求拋物線的解析式;
②要使高為3米的船通過,則其寬度須不超過多少米?
(2)如圖2,若把橋看做是圓的一部分.

①求圓的半徑;
②要使高為3米的船通過,則其寬度須不超過多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在關(guān)于x,y的二元一次方程組中.
(1)若a=3.求方程組的解;
(2)若S=a(3x+y),當(dāng)a為何值時(shí),S有最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過A(2,0)、B(12,0),且y的最大值為50,求這個(gè)二次函數(shù)的解析式;
(2)拋物線頂點(diǎn)P(2,1),且過A(-1,10),求拋物線的解析式.[來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).

(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案