在關(guān)于x,y的二元一次方程組中.
(1)若a=3.求方程組的解;
(2)若S=a(3x+y),當(dāng)a為何值時,S有最值.

(1);(2).

解析試題分析:(1)用加減消元法求解即可;(2)把方程組的兩個方程相加得到3x+y,然后代入整理,再利用二次函數(shù)的最值問題解答.
試題解析:(1)a=3時,方程組為,
②×2+③得,5x=5,解得x=1;
把x=1代入①得,1+2y=3,解得y=1。
∴方程組的解是.
(2)方程組的兩個方程相加得,3x+y=a+1,
.
∴當(dāng)a=時,S有最小值.
考點:1.解二元一次方程組;2二次函數(shù)的最值;3.整體思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線與x軸、y軸分別交于點A、C,經(jīng)過A、C兩點的拋物線與x軸的負(fù)半軸上另一交點為B,且tan∠CBO=3.

(1)求該拋物線的解析式及拋物線的頂點D的坐標(biāo);
(2)若點P是射線BD上一點,且以點P、A、B為頂點的三角形與△ABC相似,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

永嘉縣綠色和特色農(nóng)產(chǎn)品在國際市場上頗具競爭力,其中香菇遠(yuǎn)銷日本和韓國等地.上市時,外商李經(jīng)理按市場價格10元/千克在我縣收購了2000千克香菇存放入冷庫中.據(jù)預(yù)測,香菇的市場價格每天每千克將上漲0.5元,但冷庫存放這批香菇時每天需要支出各種費用合計340元,而且香菇在冷庫中最多保存110天,同時,平均每天有6千克的香菇損壞不能出售.
(1)若存放天后,將這批香菇一次性出售,設(shè)這批香菇的銷售總金額為元,試寫出之間的函數(shù)關(guān)系式.
(2)李經(jīng)理想獲得利潤22500元,需將這批香菇存放多少天后出售?(利潤=銷售總金額-收購成本-各種費用)
(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線與y軸交于點(0,3).
(1)求拋物線的解析式;(2分)
(2)求拋物線與坐標(biāo)軸的交點坐標(biāo);(6分)
(3)① 當(dāng)x取什么值時,y>0 ?
② 當(dāng)x取什么值時,y的值隨x的增大而減?(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,足球場上守門員在O處開出一高球,球從離地面1米的A處飛出(A在y軸上),運動員乙在距O點6米的B處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點M,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.

(1)求足球開始飛出到第一次落地時,該拋物線的表達(dá)式.
(2)足球第一次落地點C距守門員多少米?(取
(3)運動員乙要搶到第二個落點D,他應(yīng)再向前跑多少米?(取

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線的頂點為Q,與軸交于A(-1,0)、B(5, 0)兩點,與軸交于C點.
 
(1)直接寫出拋物線的解析式及其頂點Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點,使得△的周長最小.請在圖中畫出點的位置,并求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過點A(6,0)、B(0,-4).

(1)求該拋物線的解析式;
(2)若拋物線對稱軸與x軸交于點C,連接BC,點P在拋物線對稱軸上,使△PBC為等腰三角形,請寫出符合條件的所有點P坐標(biāo).(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?

查看答案和解析>>

同步練習(xí)冊答案