【題目】如圖1,在等腰直角三角形中,,點(diǎn)在邊上,連接,連接
(1)求證:
(2)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接
①補(bǔ)全圖形并證明
②利用備用圖進(jìn)行畫圖、試驗(yàn)、探究,找出當(dāng)三點(diǎn)恰好共線時(shí)點(diǎn)的位置,請(qǐng)直接寫出此時(shí)的度數(shù),并畫出相應(yīng)的圖形
【答案】(1)證明見解析;(2)①見解析;②畫圖見解析,.
【解析】
(1)先根據(jù)同角的余角相等推出∠BAD=∠CAE,再根據(jù)SAS證得△BAD≌△CAE,進(jìn)而可得結(jié)論;
(2)①根據(jù)題意作圖即可補(bǔ)全圖形;利用軸對(duì)稱的性質(zhì)可得ME=AE,CM=CA,然后根據(jù)SSS可推出△CME≌△CAE,再利用全等三角形的性質(zhì)和(1)題的∠BAD=∠CAE即可證得結(jié)論;
②當(dāng)三點(diǎn)恰好共線時(shí),設(shè)AC、DM交于點(diǎn)H,如圖3,由前面兩題的結(jié)論和等腰直角三角形的性質(zhì)可求得∠DCM=135°,然后在△AEH和△DCH中利用三角形的內(nèi)角和可得∠HAE=∠HDC,進(jìn)而可得,接著在△CDM中利用三角形的內(nèi)角和定理求出∠CMD的度數(shù),再利用①的結(jié)論即得答案.
解:(1)證明:∵AE⊥AD,∴∠DAE=90°,∴∠CAE+∠DAC=90°,
∵∠BAC=90°,∴∠BAD+∠DAC=90°,
∴∠BAD=∠CAE,
又∵BA=CA,DA=EA,
∴△BAD≌△CAE(SAS),
∴;
(2)①補(bǔ)全圖形如圖2所示,∵點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,∴ME=AE,CM=CA,
∵CE=CE,∴△CME≌△CAE(SSS),
∴,
∵∠BAD=∠CAE,
∴;
②當(dāng)三點(diǎn)恰好共線時(shí),設(shè)AC、DM交于點(diǎn)H,如圖3,由(1)題知:,
∵△CME≌△CAE,∴,∴∠DCM=135°,
在△AEH和△DCH中,∵∠AEH=∠ACD=45°,∠AHE=∠DHC,∴∠HAE=∠HDC,
∵,∴,
∴,
∵,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知⊙O的直徑為10cm,點(diǎn)A為⊙O外一定點(diǎn),OA=12cm,點(diǎn)P為⊙O上一動(dòng)點(diǎn),求PA的最大值和最小值.
(2)如圖:=,D、E分別是半徑OA和OB的中點(diǎn).求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x-5,令x= ,1, ,2, ,3,,4,,5,可得函數(shù)圖象上的十個(gè)點(diǎn).在這十個(gè)點(diǎn)中隨機(jī)取兩個(gè)點(diǎn)P(x1,y1),Q(x2,y2),則P,Q兩點(diǎn)在同一反比例函數(shù)圖象上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】程老師制作了如圖1所示的學(xué)具,用來探究“邊邊角條件是否可確定三角形的形狀”問題,操作學(xué)具時(shí),點(diǎn)Q在軌道槽AM上運(yùn)動(dòng),點(diǎn)P既能在以A為圓心、以8為半徑的半圓軌道槽上運(yùn)動(dòng),也能在軌道槽QN上運(yùn)動(dòng),圖2是操作學(xué)具時(shí),所對(duì)應(yīng)某個(gè)位置的圖形的示意圖.
有以下結(jié)論:
①當(dāng)∠PAQ=30°,PQ=6時(shí),可得到形狀唯一確定的△PAQ
②當(dāng)∠PAQ=30°,PQ=9時(shí),可得到形狀唯一確定的△PAQ
③當(dāng)∠PAQ=90°,PQ=10時(shí),可得到形狀唯一確定的△PAQ
④當(dāng)∠PAQ=150°,PQ=12時(shí),可得到形狀唯一確定的△PAQ
其中所有正確結(jié)論的序號(hào)是( )
A.②③B.③④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖,在正方形ABCD中,點(diǎn)E是線段BG上的動(dòng)點(diǎn),AE⊥EF,EF交正方形外角∠DCG的平分線CF于點(diǎn)F.
(探究展示)
(1)如圖1,若點(diǎn)E是BC的中點(diǎn),證明:∠BAE+∠EFC=∠DCF.
(2)如圖2,若點(diǎn)E是BC的上的任意一點(diǎn)(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說明理由.
(拓展延伸)
(3)如圖3,若點(diǎn)E是BC延長(zhǎng)線(C除外)上的任意一點(diǎn),求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一拋物線與x軸的交點(diǎn)是A(﹣2,0),B(1,0),且經(jīng)過點(diǎn)C(2,8).
(1)求該拋物線的解析式,并寫出頂點(diǎn)坐標(biāo).
(2)直接寫出當(dāng)y>8時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD,△AEC 都是等邊三角形
(1)求證:BE=DC .
(2)設(shè) BE、DC 交于 M,連 AM,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB是直角三角形,∠AOB=90°,邊AB與y軸交于點(diǎn)C.
(1)若∠A=∠AOC,試說明:∠B=∠BOC;
(2)延長(zhǎng)AB交x軸于點(diǎn)E,過O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度數(shù);
(3)如圖,OF平分∠AOM,∠BCO的平分線交FO的延長(zhǎng)線于點(diǎn)P,∠A=40°,當(dāng)△ABO繞O點(diǎn)旋轉(zhuǎn)時(shí)(邊AB與y軸正半軸始終相交于點(diǎn)C),問∠P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級(jí)污水處理池(平面圖如圖ABCD所示).由于地形限制,三級(jí)污水處理池的長(zhǎng)、寬都不能超過16米.如果池的外圍墻建造單價(jià)為每米400元,中間兩條隔墻建造單價(jià)為每米300元,池底建造單價(jià)為每平方米80元.(池墻的厚度忽略不計(jì))當(dāng)三級(jí)污水處理池的總造價(jià)為47200元時(shí),求池長(zhǎng)x.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com