【題目】感知:如圖,在四邊形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)APD=90°時(shí),可知△ABP∽△PCD.(不要求證明)

探究:如圖,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:△ABP∽△PCD.

拓展:如圖,在ABC中,點(diǎn)P是邊BC的中點(diǎn),點(diǎn)D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,則DE的長(zhǎng)為   

【答案】感知:見(jiàn)解析;探究:證明見(jiàn)解析;拓展:

【解析】

感知:先判斷出,∠BAP=DPC,進(jìn)而得出結(jié)論;

探究:同理根據(jù)兩角相等相等,兩三角形相似,進(jìn)而得出結(jié)論;

拓展:利用相似三角形BDP∽△CPE得出比例式求出BD,三角形內(nèi)角和定理證得ACABAC=AB;然后在直角ABC中由勾股定理求得AC=AB=6;最后利用在直角ADE中利用勾股定理來(lái)求DE的長(zhǎng)度.

感知:∵∠APD=90°,

∴∠APB+DPC=90°,

∵∠B=90°,

∴∠APB+BAP=90°,

∴∠BAP=DPC,

ABCD,B=90°,

∴∠C=B=90°,

∴△ABP∽△DCP.

探究:∵∠APC=BAP+B,APC=APD+CPD,

∴∠BAP+B=APD+CPD.

∵∠B=APD,

∴∠BAP=CPD.

∵∠B=C,

ABP∽△PCD,

拓展:同探究的方法得出,BDP∽△CPE,

,

∵點(diǎn)P是邊BC的中點(diǎn),

BP=CP=3

CE=4,

,

BD=,

∵∠B=C=45°,

∴∠A=180°﹣B﹣C=90°,

ACABAC=AB=6,

AD=AB﹣BD=6﹣=,AE=AC﹣CE=6﹣4=2,

RtADE中,DE=

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中每個(gè)小正方形邊長(zhǎng)都是1.

(1)畫(huà)出ABC關(guān)于直線1對(duì)稱的圖形;

(2)在直線l上找一點(diǎn)P,使PB=PC;(要求在直線1上標(biāo)出點(diǎn)P的位置)

(3)在直線l上找一點(diǎn)Q,使點(diǎn)Q到點(diǎn)B與點(diǎn)C的距離之和最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列說(shuō)法,其中正確的是(

①關(guān)于的一元二次方程,若,則方程一定沒(méi)有實(shí)數(shù)根;

②關(guān)于的一元二次方程,若,則方程必有實(shí)數(shù)根;

③若是方程的根,則;

④若,,為三角形三邊,方程有兩個(gè)相等實(shí)數(shù)根,則該三角形為直角三角形.

A. ①② B. ①④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,,點(diǎn)開(kāi)始沿折線的速度運(yùn)動(dòng),點(diǎn)開(kāi)始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形DEFG的頂點(diǎn)D、EABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上.如果BC=4,ABC的面積是6,那么這個(gè)正方形的邊長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個(gè)動(dòng)點(diǎn)(DBC均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE;

2)求證:CE平分∠ACF

3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)P是平面內(nèi)任意一點(diǎn)(不同于A、BC),若點(diǎn)PA、BC中的某兩點(diǎn)的連線的夾角為直角時(shí),則稱點(diǎn)P為△ABC的一個(gè)勾股點(diǎn).

1)如圖1,若點(diǎn)P是△ABC內(nèi)一點(diǎn),∠A=55°,∠ABP=10°,∠ACP=25°,試說(shuō)明點(diǎn)P是△ABC的一個(gè)勾股點(diǎn);

2)如圖2,等腰△ABC的頂點(diǎn)都在格點(diǎn)上,點(diǎn)DBC的中點(diǎn),點(diǎn)P在直線AD上,請(qǐng)?jiān)趫D中標(biāo)出使得點(diǎn)P是△ABC的勾股點(diǎn)時(shí),點(diǎn)P的位置;

3)在RtABC中,∠ACB=90°,AC=12,BC=16,點(diǎn)DAB的中點(diǎn),點(diǎn)P在射線CD.若點(diǎn)P是△ABC的勾股點(diǎn),請(qǐng)求出CP的長(zhǎng);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC,

(1)請(qǐng)你利用直尺和圓規(guī)完成如下操作:

①作△ABC的角平分線AD;

②作邊AB的垂直平分線EFEFAD相交于點(diǎn)P;

③連接PBPC

請(qǐng)你觀察圖形解答下列問(wèn)題:

2)線段PA,PBPC之間的數(shù)量關(guān)系是   ;請(qǐng)說(shuō)明理由.

3)若∠ABC70°,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)P從點(diǎn)B出發(fā),以速度沿向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.

1_______.(用含t的代數(shù)式表示)

2)當(dāng)點(diǎn)P從點(diǎn)B開(kāi)始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以的速度沿向點(diǎn)A運(yùn)動(dòng),當(dāng)時(shí),求v的值.

3)在(2)的條件下,求時(shí)v的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案