【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.

(1)求反比例函數(shù)的表達(dá)式及點B的坐標(biāo);
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)及△PAB的面積.

【答案】
(1)解:把點A(1,a)代入一次函數(shù)y=﹣x+4,

得:a=﹣1+4,解得:a=3,

∴點A的坐標(biāo)為(1,3).

把點A(1,3)代入反比例函數(shù)y= ,

得:3=k,

∴反比例函數(shù)的表達(dá)式y(tǒng)= ,

聯(lián)立兩個函數(shù)關(guān)系式成方程組得:

解得: ,或

∴點B的坐標(biāo)為(3,1)


(2)解:作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.

∵點B、D關(guān)于x軸對稱,點B的坐標(biāo)為(3,1),

∴點D的坐標(biāo)為(3,﹣1).

設(shè)直線AD的解析式為y=mx+n,

把A,D兩點代入得:

解得: ,

∴直線AD的解析式為y=﹣2x+5.

令y=﹣2x+5中y=0,則﹣2x+5=0,

解得:x= ,

∴點P的坐標(biāo)為( ,0).

S△PAB=S△ABD﹣S△PBD= BD(xB﹣xA)﹣ BD(xB﹣xP)= ×[1﹣(﹣1)]×(3﹣1)﹣ ×[1﹣(﹣1)]×(3﹣ )=


【解析】(1)由點A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點A的坐標(biāo),再由點A的坐標(biāo)利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標(biāo);(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結(jié)合點B的坐標(biāo)找出點D的坐標(biāo),設(shè)直線AD的解析式為y=mx+n,結(jié)合點A、D的坐標(biāo)利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標(biāo),再通過分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知α是銳角,且sin(α﹣15°)= 計算: ﹣4cosα﹣(π﹣3.14)0+tanα+( ﹣1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時,測得該島位于正北方向20(1+ )海里的C處,為了防止某國海巡警干擾,就請求我A處的漁監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①倒數(shù)等于本身的數(shù)是±1;②互為相反數(shù)的兩個非零數(shù)的商為﹣1;③如果兩個數(shù)的絕對值相等,那么這兩個數(shù)相等;④有理數(shù)可以分為正有理數(shù)和負(fù)有理數(shù);⑤單項式﹣的系數(shù)是﹣,次數(shù)是6;⑥多項式a3+4a28是三次三項式,其中正確的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正方體的6個面分別涂上不同的顏色,并畫上朵數(shù)不等的花,各面上的顏色與花朵數(shù)的情況如下表:

顏色

藍(lán)

花朵數(shù)

1

2

3

4

5

6

現(xiàn)將上述大小相同,顏色、花朵分布完全一樣的四個正方體拼成一個在同一平面上放置的長方體,如圖所示,那么長方體的下底面共有_____朵花.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,萬州市居民生活用水按階梯式水價計費,表是該市居民“一戶一表”生活用水階梯式計費價格表的一部分信息:(水價計費自來水銷售費用污水處理費用)

自來水銷售價格

污水處理價格

每戶每月用水量

單價:元

單價:元

17噸及以下

0.80

超過17噸不超過30噸的部分

0.80

超過30噸的部分

6.00

0.80

說明:①每戶產(chǎn)生的污水量等于該戶的用水量,②水費=自來水費+污水處理費;

已知小明家20133月份用水20噸,交水費66元;5月份用水25噸,交水費91元.

1)求,的值.

2)隨著夏天的到來,用水量將增加。為了節(jié)省開支,小夢計劃把6月份的水費控制在不超過家庭月收入的2%,若小夢加的月收入為9200元,則小王家6月份最多能用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰和小明沿同一條筆直的馬路同時從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到 達(dá)圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖像回答下列問題:

(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.

(2)請你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達(dá)式;

(3)若設(shè)兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過AADED于點D,過BBEED于點E.
求證:BEC≌△CDA;
(模型應(yīng)用)
(2)①已知直線l1:y=x+4與坐標(biāo)軸交于點A、B,將直線l1繞點A逆時針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;
②如圖3,長方形ABCO,O為坐標(biāo)原點,點B的坐標(biāo)為(8,-6),點A、C分別在坐標(biāo)軸上,點P是線段BC上的動點,點D是直線y=-2x+6上的動點且在第四象限.若APD是以點D為直角頂點的等腰直角三角形,請直接寫出點D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案