【題目】如圖將弧BC沿弦BC折疊交直徑AB于點(diǎn)D,若AD=2,DB=4,則弦BC的長(zhǎng)是___________.
【答案】
【解析】
作CH⊥AD于H,連接OC、AC、CD,如圖,先利用折疊的性質(zhì)得AC弧與CDB弧所在的圓為等圓,利用圓周角定理得弧AC=弧CD,所以CA=CD,則AH=DH=1,再利用勾股定理計(jì)算出CH=,AC=,然后根據(jù)圓周角定理得到∠ACB=90°,則利用勾股定理可計(jì)算出BC.
解:作CH⊥AD于H,連接OC、AC、CD,如圖,
∵以半圓的一條弦BC為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,
∴AC弧與CDB弧所在的圓為等圓,
∴弧AC=弧CD,
∴CA=CD,
∴AH=DH=1.
∵AD=2,DB=4,
∴OA=OB=OC=3,
在Rt△OCH中,OC=3,OH=2,
∴CH=,
在Rt△ACH中,AC==,
∵AB為直徑,
∴∠ACB=90°,
∴BC==.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖1,是的直徑,點(diǎn)在上,,垂足為,,分別交、于點(diǎn)、.求證:.
圖1 圖2
(1)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書寫本題的證明過程.
(2)如圖2,若點(diǎn)和點(diǎn)在的兩側(cè),、的延長(zhǎng)線交于點(diǎn),的延長(zhǎng)線交于點(diǎn),其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說明理由;
(3)在(2)的條件下,若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABC的平分線交AD邊于點(diǎn)E,點(diǎn)F是CD的中點(diǎn),連接EF,若AB=8,且EF平分∠BED,則AD的長(zhǎng)為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O內(nèi)接等邊三角形,將△ABC繞圓心O旋轉(zhuǎn)30°到△DEF處,連接AD、AE,則∠EAD的度數(shù)為( )
A.150°B.135°C.120°D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)證明:DF是⊙O的切線;
(2)若AC=3AE,FC=6,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙M經(jīng)過O點(diǎn),并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長(zhǎng)是方程的兩根.
(1)求線段OA、OB的長(zhǎng);
(2)若點(diǎn)C在劣弧OA上,連結(jié)BC交OA于D,當(dāng)OC2=CD·CB時(shí),求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)C在優(yōu)弧OA上,作直線BC交x軸于D,是否存在△COB和△CDO相似,若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】創(chuàng)客聯(lián)盟的隊(duì)員想用3D打印完成一幅邊長(zhǎng)為6米的正方形作品ABCD,設(shè)計(jì)圖案如圖所示(四周陰影是四個(gè)全等的矩形,用材料甲打;中心區(qū)是正方形MNPQ,用材料乙打。诖蛴『穸缺3窒嗤那闆r下,兩種材料的消耗成本如下表:
材料 | 甲 | 乙 |
價(jià)格(元/米2) | 80 | 50 |
設(shè)矩形的較短邊AH的長(zhǎng)為x米,打印材料的總費(fèi)用為y元.
(1)MQ的長(zhǎng)為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長(zhǎng)不小于2米時(shí),預(yù)備材料的購(gòu)買資金2800元夠用嗎?請(qǐng)利用函數(shù)的增減性來說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E是BC邊上一點(diǎn),以AB為直徑在正方形內(nèi)作半圓
O,將△DCE沿DE翻折,點(diǎn)C剛好落在半圓O的點(diǎn)F處,則CE的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:一元二次方程,當(dāng)時(shí),設(shè)兩根為,,則兩根與系數(shù)的關(guān)系為:;.
應(yīng)用:
(1)方程的兩實(shí)數(shù)根分別為,,則______,_____;
(2)若關(guān)于的方程的有兩個(gè)實(shí)數(shù)根,,求的取值范圍;
(3)在(2)的條件下,若滿足,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com