【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
【答案】(1)y=x2﹣2x﹣3;(2)(,);(3)P點(diǎn)的坐標(biāo)為,四邊形ABPC的面積的最大值為.
【解析】
(1)將B、C兩點(diǎn)的坐標(biāo)代入解析式中,利用待定系數(shù)法求解即可;
(2)已知要使四邊形POP′C是菱形,則P點(diǎn)一定在OC的垂直平分線上,就可根據(jù)C點(diǎn)的坐標(biāo)知道OC的長(zhǎng)度,從而得到P點(diǎn)的縱坐標(biāo),已知P點(diǎn)的縱坐標(biāo)就將其代入解析式中即可求得P點(diǎn)坐標(biāo).
(3)過(guò)點(diǎn)P作y軸的平行線與BC交于點(diǎn)Q,與OB交于點(diǎn)F,設(shè)P點(diǎn)坐標(biāo)為,可求出BC的解析式從而表示出Q點(diǎn)的解析式,根據(jù)可用含有x的式子表示出四邊形ABPC的面積,最后根據(jù)式子分析最大值即為四邊形ABCP面積的最大值,此時(shí)求出的x即為P點(diǎn)的橫坐標(biāo),再代入解析式即可求出P點(diǎn)的坐標(biāo)即可.
解:(1)將B、C兩點(diǎn)的坐標(biāo)代入得:,
解得:;
所以二次函數(shù)的表達(dá)式為:.
(2)存在點(diǎn)P,使四邊形POP′C為菱形;
設(shè)P點(diǎn)坐標(biāo)為,PP′交CO于E
若四邊形POP′C是菱形,則有;
連接PP′,則于E,
∵C,
∴,
又∵,
∴,
∴;
∴,
解得,(不合題意,舍去),
∴P點(diǎn)的坐標(biāo)為.
(3)過(guò)點(diǎn)P作y軸的平行線與BC交于點(diǎn)Q,與OB交于點(diǎn)F,設(shè)P點(diǎn)坐標(biāo)為,設(shè)直線BC的解析式為:,
則,
解得:,
∴直線BC的解析式為,
則Q點(diǎn)的坐標(biāo)為;
當(dāng),
解得:,,
∴,,
,
=
=
=
當(dāng)時(shí),四邊形ABPC的面積最大
此時(shí)P點(diǎn)的坐標(biāo)為,四邊形ABPC的面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣(x﹣m)2+4(m>0)的頂點(diǎn)為A,與直線x=相交于點(diǎn)B,點(diǎn)A關(guān)于直線x=的對(duì)稱點(diǎn)為C.
(1)若拋物線y=﹣(x﹣m)2+4(m>0)經(jīng)過(guò)原點(diǎn),求m的值.
(2)點(diǎn)C的坐標(biāo)為 .用含m的代數(shù)式表示點(diǎn)B到直線AC的距離為 .
(3)將y=﹣(x﹣m)2+4(m>0,且x≥)的函數(shù)圖象記為圖象G,圖象G關(guān)于直線x=的對(duì)稱圖象記為圖象H.圖象G與圖象H組合成的圖象記為圖象M.
①當(dāng)圖象M與x軸恰好有三個(gè)交點(diǎn)時(shí),求m的值.
②當(dāng)△ABC為等腰直角三角形時(shí),直接寫(xiě)出圖象M所對(duì)應(yīng)的函數(shù)值小于0時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)的圖象經(jīng)過(guò)原點(diǎn),開(kāi)口向上,對(duì)稱軸為直線,對(duì)于下列兩個(gè)結(jié)論:①m為任意實(shí)數(shù),則有;②方程有兩個(gè)不相等的實(shí)數(shù)根,一個(gè)根小于0,另一個(gè)根大于2,說(shuō)法正確的是( )
A.①對(duì),②錯(cuò)B.①錯(cuò),②對(duì)C.①②都對(duì)D.①②都錯(cuò)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線M1:y=﹣x2+4x交x正半軸于點(diǎn)A,將拋物線M1先向右平移3個(gè)單位,再向上平移3個(gè)單位得到拋物線M2,M1與M2交于點(diǎn)B,直線OB交M2于點(diǎn)C.
(1)求拋物線M2的解析式;
(2)點(diǎn)P是拋物線M1上AB間的一點(diǎn),作PQ⊥x軸交拋物線M2于點(diǎn)Q,連接CP,CQ.設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),使△CPQ的面積最大,并求出最大值;
(3)如圖2,將直線OB向下平移,交拋物線M1于點(diǎn)E,F,交拋物線M2于點(diǎn)G,H,則的值是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)報(bào)道,從2018年8月以來(lái)“非洲豬瘟”給生豬養(yǎng)殖戶帶來(lái)了不可估量的損失,某養(yǎng)殖戶為了預(yù)防“非洲豬瘟”的侵襲,每天對(duì)豬場(chǎng)進(jìn)行藥熏消毒,已知一瓶藥物釋放過(guò)程中,一個(gè)圈舍內(nèi)每立方米空氣中含藥量y(毫克)與時(shí)間x(分鐘)之間滿足正比例函數(shù)關(guān)系;藥物釋放完后,y與x之間滿足反比例函數(shù)關(guān)系,如圖所示,結(jié)合圖中提供的信息解答下列問(wèn)題.
(1)分別求當(dāng)和時(shí),y與x之間滿足的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量不低于6毫克時(shí),消毒才有效,那么這次熏藥的有效消毒時(shí)間是多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在中,,點(diǎn)為邊的中點(diǎn),點(diǎn)在上,連接并延長(zhǎng)到點(diǎn),使,點(diǎn)在線段上,且.
(1)如圖1,連接,當(dāng)時(shí),求證:
(2)如圖2,當(dāng)時(shí),則線段之間的數(shù)量關(guān)系為 ;
(3)在(2)的條件下,延長(zhǎng)到,使,連接,若,,求證:,并求的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com