【題目】2020蓉漂云招聘活動(dòng)在425日正式啟動(dòng),共發(fā)布了崗位13198個(gè).某網(wǎng)絡(luò)公司招聘一名高級(jí)網(wǎng)絡(luò)工程師,應(yīng)聘者小魏參加筆試和面試,成績(jī)(100分制)如表所示:

筆試

面試

成績(jī)

98

評(píng)委1

評(píng)委2

評(píng)委3

評(píng)委4

評(píng)委5

評(píng)委6

評(píng)委

7

94

95

92

99

98

97

96

其中規(guī)定:面試得分中去掉一個(gè)最高分和一個(gè)最低分,余下的面試得分的平均值作為應(yīng)聘者的面試成績(jī).

1)請(qǐng)計(jì)算小魏的面試成績(jī);

2)如果面試成績(jī)與筆試成績(jī)按64的比例確定,請(qǐng)計(jì)算出小魏的最終成績(jī).

【答案】1)小魏的面試成績(jī)是96分;(2)小魏的最終成績(jī)是96.8分.

【解析】

1)要求平均分只要將所有的成績(jī)加起來(lái)再除以5即可;

2)要判斷誰(shuí)被錄用,可根據(jù)題目所給的提示求出綜合成績(jī)即可.

解:(1)根據(jù)題意:去掉

94+95+98+97+96÷596(分).

故小魏的面試成績(jī)是96分;

2)由題意得:(分).

故小魏的最終成績(jī)是96.8分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列正多邊形中,是中心,定義:為相應(yīng)正多邊形的基本三角形.如圖1,是正三角形的基本三角形;如圖2是正方形的基本三角形;如圖3為正邊形…的基本三角形.將基本繞點(diǎn)逆時(shí)針旋轉(zhuǎn)角度得

1)若線段與線段相交點(diǎn),則:

1的取值范圍是________;

3的取值范圍是________;

2)在圖1中,求證

3)在圖2中,正方形邊長(zhǎng)為4,,邊上的一點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,若有最小值時(shí),求出該最小值及此時(shí)的長(zhǎng)度;

4)如圖3,當(dāng)時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過點(diǎn)A,D⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OFAD于點(diǎn)G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);

(3)BE=8,sinB=,求DG的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點(diǎn),拋物線經(jīng)過點(diǎn),對(duì)稱軸為直線,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn).過點(diǎn)作直線軸,交軸于點(diǎn).

(Ⅰ)求該拋物線的解析式及對(duì)稱軸;

(Ⅱ)點(diǎn)軸上,當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo);

(Ⅲ)拋物線上是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,有下列結(jié)論: ;m為任意實(shí)數(shù),則;;,且,則其中,正確結(jié)論的個(gè)數(shù)為

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC8,BC6,DAB邊上的動(dòng)點(diǎn),過點(diǎn)DDEAB交邊AC于點(diǎn)E,過點(diǎn)EEFDEBC于點(diǎn)F,連接DF

1)當(dāng)AD4時(shí),求EF的長(zhǎng)度;

2)求DEF的面積的最大值;

3)設(shè)ODF的中點(diǎn),隨著點(diǎn)D的運(yùn)動(dòng),則點(diǎn)O的運(yùn)動(dòng)路徑的長(zhǎng)度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形中,點(diǎn)在邊上,.點(diǎn)為邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),連接關(guān)于的軸對(duì)稱圖形為

1)當(dāng)點(diǎn)上時(shí),求證:;

2)當(dāng)三點(diǎn)共線時(shí),求的長(zhǎng);

3)連接設(shè)的面積為的面積為是否存在最大值?若存在,請(qǐng)直接寫出的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtAOB中,∠AOB90°,OA3OB2,將RtAOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得RtFOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,,分別是邊,的中點(diǎn),在邊上取點(diǎn),點(diǎn)在邊上,且滿足,連接,作于點(diǎn),于點(diǎn),線段,,分割成I、II、III、IV四個(gè)部分,將這四個(gè)部分重新拼接可以得到如圖2所示的矩形,若,則圖1的長(zhǎng)為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案