【題目】如圖,平行四邊形紙片ABCD的邊ABBC的長分別是10cm7.5cm,將其四個角向內(nèi)對折后,點B與點C重合于點C',點A與點D重合于點A.四條折痕圍成一個信封四邊形EHFG,其頂點分別在平行四邊形ABCD的四條邊上,則EF__cm

【答案】10

【解析】

先根據(jù)有三個角是直角的四邊形是矩形證明四邊形EHFG是矩形,再證明△FCH≌△EAG,可得CF=AE=FC',可知EF=AB,即可得結(jié)論.

如圖中,

由翻折可知:∠CHF=∠FHC',∠BHE=∠EHC',

∴∠FHE=∠FHC'+∠EHC'(∠CHC'+∠BHC')=90°,

同法可證:∠HFG=∠GEH=90°,

∴四邊形EHFG是矩形.

∴FH=EG,F(xiàn)H∥EG,

∴∠HFC'=∠FEG,

∵∠CFH=∠HFC',∠AEG=∠GEA',

∴∠CFH=∠AEG,

∵四邊形ABCD是平行四邊形,

∴∠C=∠A,BC=AD,

由翻折得:CH=C'H=BHBC,AG=A'G=DGAD,

∴CH=AG,

∴△HCF≌△GAE(AAS),

∴CF=AE,

∴EF=FC'+EC'=AE+BE=AB=10cm,

故答案為:10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AD、BD分別是△ABC的內(nèi)角∠BAC、∠ABC的平分線,過點AAEAD,交BD的延長線于點E.

1)求證:∠EC;

2)如圖2,如果AEAB,且BDDE23,求cosABC的值;

3)如果∠ABC是銳角,且ABCADE相似,求∠ABC的度數(shù),并直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)yx0)的圖象經(jīng)過OABC的頂點B,點Ax軸上,ACx軸交反比例函數(shù)圖象于點D,BEx軸于點E,則BEAD=(  )

A. 12B. 1C. 13D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一種折疊門,由上下軌道和兩扇長寬相等的活頁門組成,整個活頁門的右軸固定在門框

上,通過推動左側(cè)活頁門開關(guān);圖2是其俯視圖簡化示意圖,已知軌道 ,兩扇活頁門的寬 ,固定,當(dāng)點上左右運(yùn)動時,的長度不變(所有結(jié)果保留小數(shù)點后一位).

(1),的長;

(2)當(dāng)點從點向右運(yùn)動60時,求點在此過程中運(yùn)動的路徑長.

參考數(shù)據(jù):sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π3.14)

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陳老師對他所教的九(1)、九(2)兩個班級的學(xué)生進(jìn)行了一次檢測,批閱后對最后一道試題的得分情況進(jìn)行了歸類統(tǒng)計(各類別的得分如下表),并繪制了如圖所示的每班各類別得分人數(shù)的條形統(tǒng)計圖(不完整).

各類別的得分表

得分

類別

:沒有作答

:解答但沒有正確

:只得到一個正確答案

:得到兩個正確答案,解答完全正確

已知兩個班一共有的學(xué)生得到兩個正確答案,解答完全正確,九(1)班學(xué)生這道試題的平均得分為分.請解決如下問題:

1)九(2)班學(xué)生得分的中位數(shù)是 ______;

2)九(1)班學(xué)生中這道試題作答情況屬于類和類的人數(shù)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將在同一平面內(nèi)如圖放置的兩塊三角板繞公共頂點A旋轉(zhuǎn),連接BC,DE.探究SABCSADC的比是否為定值.

1)兩塊三角板是完全相同的等腰直角三角板時,SABCSADE是否為定值?如果是,求出此定值,如果不是,說明理由.(圖①)

2)一塊是等腰直角三角板,另一塊是含有30°角的直角三角板時,SABCSADE是否為定值?如果是,求出此定值,如果不是,說明理由.(圖②)

3)兩塊三角板中,∠BAE+CAD180°,ABa,AEb,ACm,ADnab,m,n為常數(shù)),SABCSADE是否為定值?如果是,用含a,bm,n的式子表示此定值(直接寫出結(jié)論,不寫推理過程),如果不是,說明理由.(圖③)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為,與軸相交于點,對稱軸為直線,點是線段的中點.

1)求拋物線的表達(dá)式;

2)寫出點的坐標(biāo)并求直線的表達(dá)式;

3)設(shè)動點,分別在拋物線和對稱軸l上,當(dāng)以,,為頂點的四邊形是平行四邊形時,求兩點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽光體育活動,某校為了解全校1000名學(xué)生每周課外體育活動時間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對這50名學(xué)生每周課外體育活動時間x(單位:小時)進(jìn)行了統(tǒng)計.根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計圖,并知道每周課外體育活動時間在6≤x<8小時的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計圖解答下列問題:

(1)本次調(diào)查屬于 調(diào)查,樣本容量是 ;

(2)請補(bǔ)全頻數(shù)分布直方圖中空缺的部分;

(3)求這50名學(xué)生每周課外體育活動時間的平均數(shù);

(4)估計全校學(xué)生每周課外體育活動時間不少于6小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點DDHAC于點H,連接DE交線段OA于點F.

(1)求證:DH是圓O的切線;

(2)若AEH的中點,求的值;

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

同步練習(xí)冊答案