【題目】如圖,Rt△ABC,∠BAC=90°,點(diǎn)D,E分別為邊AB,BC的中點(diǎn),點(diǎn)F在CA延長(zhǎng)線上,且∠FDA=∠B.
(1)求證:AF=DE;
(2)若AC=3,BC=5,求四邊形AEDF的周長(zhǎng).
【答案】(1)見(jiàn)解析;(2)8
【解析】
(1)根據(jù)中位線的性質(zhì)可知DE∥CF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AE=BE,進(jìn)而推出∠BAE=∠B=∠FDA,推出AE∥DF,然后根據(jù)平行四邊形的判定和性質(zhì)得出結(jié)論;
(2)由平行四邊形的性質(zhì)可知AF=ED,AE=DF,根據(jù)中位線的性質(zhì)可知ED=AC,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AE=BE=BC,根據(jù)平行四邊形的周長(zhǎng)=2DE+2AE即可求出答案.
解:∵Rt△ABC,∠BAC=90°,點(diǎn)D,E分別為邊AB,BC的中點(diǎn),
∴ED∥AC,AE=BE,
∴∠BAE=∠B
∵∠B=∠FDA,
∴∠BAE =∠FDA,
∴AE∥DF,
∴四邊形AEDF是平行四邊形,
∴AF=DE;
(2)∵四邊形AEDF是平行四邊形,
∴ED=AF
∵Rt△ABC,∠BAC=90°,點(diǎn)D,E分別為邊AB,BC的中點(diǎn),
∴ED=AC,AE=BE=BC,
∵AC=3,BC=5,
∴平行四邊形AEDF的周長(zhǎng)=2DE+2AE=AC+BC=3+5=8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD,點(diǎn)O為AD中點(diǎn),點(diǎn)E在BD上,連接EO并延長(zhǎng)交BC于點(diǎn)F,連接BE,DF.
(1)求證:四邊形BEDF是平行四邊形;
(2)若AB=3,AD=6,∠BAD=135°,當(dāng)四邊形BEDF為菱形時(shí),求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)每天增加x元(x為10的正整數(shù)倍)
(1) 設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出y與x的函數(shù)關(guān)系式
(2) 設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式
(3) 一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線C1:
(1) ① 無(wú)論m取何值,拋物線經(jīng)過(guò)定點(diǎn)P
② 隨著m的取值的變化,頂點(diǎn)M(x,y)隨之變化,y是x的函數(shù),則點(diǎn)M滿足的函數(shù)C2的關(guān)系式為__________________
(2) 如圖1,拋物線C1與x軸僅有一個(gè)公共點(diǎn),請(qǐng)?jiān)趫D1畫(huà)出頂點(diǎn)M滿足的函數(shù)C2的大致圖象,平行于y軸的直線l分別交C1、C2于點(diǎn)A、B.若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說(shuō)明理由
(3) 如圖2,二次函數(shù)的圖象C1的頂點(diǎn)M在第二象限、交x軸于另一點(diǎn)C,拋物線上點(diǎn)M與點(diǎn)P之間一點(diǎn)D的橫坐標(biāo)為-2,連接PD、CD、CM、DM.若S△PCD=S△MCD,求二次函數(shù)的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是二次函數(shù)y=ax2+bx+c的部分x,y的對(duì)應(yīng)值:
x | … | -1 | - | 0 | 1 | 2 | 3 | … | |||
y | … | 2 | -1 | - | -2 | - | -1 | 2 | … |
(1)此二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是 ;
(2)當(dāng)拋物線y=ax2+bx+c的頂點(diǎn)在直線y=x+n的下方時(shí),n的取值范圍是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上有三個(gè)點(diǎn)A、B、C,表示的數(shù)分別是-4、-2、3,請(qǐng)回答:
(1)若C、B兩點(diǎn)的距離與A、B兩點(diǎn)距離相等,則需將點(diǎn)C向左移動(dòng)________個(gè)單位;
(2)若移動(dòng)A、B、C三點(diǎn)中的兩點(diǎn),使三個(gè)點(diǎn)表示的數(shù)相同,移動(dòng)方法有________種,其中移動(dòng)所走的距離之和最小的是________個(gè)單位;
(3)若在B處有一小青蛙,一步跳一個(gè)單位長(zhǎng),小青蛙第一次先向左跳一步,第2次向右跳3步,第3次向再向左跳5步,第4次再向右跳7步……,按此規(guī)律繼續(xù)下去,那么跳第100次時(shí)落腳點(diǎn)表示的數(shù)是________;
(4)若有兩只小青蛙M、N,它們?cè)跀?shù)軸上的點(diǎn)表示的數(shù)分別為整數(shù)x、y,且|x-2|+|y+3|=2,求兩只青蛙M、N之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足+=0,請(qǐng)回答問(wèn)題:
(1)請(qǐng)直接寫(xiě)出a、b、c的值;
(2)數(shù)軸上a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)M是A、B之間的一個(gè)動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為m,請(qǐng)化簡(jiǎn)(請(qǐng)寫(xiě)出化簡(jiǎn)過(guò)程);
(3)在(1)(2)的條件下,點(diǎn)A、B、C開(kāi)始在數(shù)軸上運(yùn)動(dòng).若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng).同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問(wèn):BC-AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,根據(jù)圖中信息解答下列問(wèn)題:
(1)關(guān)于x的不等式ax+b>0的解集是 ;
(2)關(guān)于x的不等式mx+n<1的解集是 ;
(3)當(dāng)x滿足 的條件時(shí),y1y2;
(4)當(dāng)x滿足 的條件時(shí),0<y2<y1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com