【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF

1)判斷四邊形ACDF的形狀;

2)當(dāng)BC=2CD時(shí),求證:CF平分∠BCD

【答案】1)四邊形ACDF是平行四邊形;(2)見解析.

【解析】

1)利用矩形的性質(zhì),即可判定FAE≌△CDE,即可得到CD=FA,再根據(jù)CDAF,即可得出四邊形ACDF是平行四邊形;

2)先判定ACDF是平行四邊形,可得FB=BC,再根據(jù)∠BCF=DCF=45°,即可得到答案.

解:(1)∵四邊形ABCD是矩形,

ABCD

∴∠FAE=CDE,

EAD的中點(diǎn),

AE=DE,

又∵∠FEA=CED,

∴△FAE≌△CDE

CD=FA,

又∵CDAF

∴四邊形ACDF是平行四邊形;

2)證明:∵BC=2CD,ACDF是平行四邊形,

FB=BC,

∴∠BCF=45°

∴∠DCF=45°,

CF平分∠BCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3BC,以點(diǎn)A為圓心,AD為半徑畫弧交AB于點(diǎn)E連接CE,作線段CE的中垂線交AB于點(diǎn)F,連接CF,則sinCFB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)DE分別是邊BC,AC的中點(diǎn),連接DE. △EDC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

1)問題發(fā)現(xiàn)

當(dāng)時(shí),;當(dāng)時(shí),

2)拓展探究

試判斷:當(dāng)0°≤α360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情況給出證明.

3)問題解決

當(dāng)△EDC旋轉(zhuǎn)至A、DE三點(diǎn)共線時(shí),直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購進(jìn)的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進(jìn)價(jià);

該商場將購進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于二次函數(shù)y=ax2-(2a-1)x+a-1(a0),有下列結(jié)論:①其圖象與x軸一定相交;②若a0,函數(shù)在x1時(shí),yx的增大而減小;③無論a取何值,拋物線的頂點(diǎn)始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個(gè)點(diǎn).其中正確結(jié)論的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《人民日?qǐng)?bào)》點(diǎn)贊湖北宜昌智慧停車平臺(tái).作為全國智慧城市試點(diǎn),我市通過互聯(lián)網(wǎng)大數(shù)據(jù)等新科技,打造智慧停車平臺(tái),著力化解城市停車難問題.市內(nèi)某智慧公共停車場的收費(fèi)標(biāo)準(zhǔn)是:停車不超過分鐘,不收費(fèi);超過分鐘,不超過分鐘,計(jì)小時(shí),收費(fèi)元;超過小時(shí)后,超過小時(shí)的部分按每小時(shí)元收費(fèi)(不足小時(shí),按小時(shí)計(jì)).

1)填空:若市民張先生某次在該停車場停車小時(shí)分鐘,應(yīng)交停車費(fèi)________元.若李先生也在該停、車場停車,支付停車費(fèi)元,則停車場按________小時(shí)(填整數(shù))計(jì)時(shí)收費(fèi).

2)當(dāng)取整數(shù)且時(shí),求該停車場停車費(fèi)(單位:元)關(guān)于停車計(jì)時(shí)(單位:小時(shí))的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開發(fā)了“書畫、器樂、戲曲、棋類”四大類興趣課程.為了解全校學(xué)生對(duì)每類課程的選擇情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人必選且只能選一類),先將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:

(1)本次隨機(jī)調(diào)查了多少名學(xué)生?

(2)補(bǔ)全條形統(tǒng)計(jì)圖中“書畫”、“戲曲”的空缺部分;

(3)若該校共有名學(xué)生,請(qǐng)估計(jì)全校學(xué)生選擇“戲曲”類的人數(shù);

(4)學(xué)校從這四類課程中隨機(jī)抽取兩類參加“全市青少年才藝展示活動(dòng)”,用樹形圖或列表法求處恰好抽到“器樂”和“戲曲”類的概率.(書畫、器樂、戲曲、棋類可分別用字幕表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】亞洲文明對(duì)話大會(huì)召開期間,大批的大學(xué)生志愿者參與服務(wù)工作.某大學(xué)計(jì)劃組織本校全體志愿者統(tǒng)一乘車去會(huì)場,若單獨(dú)調(diào)配36座新能源客車若干輛,則有2人沒有座位;若只調(diào)配22座新能源客車,則用車數(shù)量將增加4輛,并空出2個(gè)座位.

(1)計(jì)劃調(diào)配36座新能源客車多少輛?該大學(xué)共有多少名志愿者?

(2)若同時(shí)調(diào)配36座和22座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某貨運(yùn)公司有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運(yùn)貨29噸,2輛大貨車與6輛小貨車一次可以運(yùn)貨31噸.

I.請(qǐng)問1輛大貨車和1輛小貨車一次可以分別運(yùn)貨多少噸;

Ⅱ.目前有46.4噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共10輛,全部貨物一次運(yùn)完.其中每輛大貨車一次運(yùn)貨花費(fèi)500元,每輛小貨車一次運(yùn)貨花費(fèi)300元,請(qǐng)問貨運(yùn)公司應(yīng)如何安排車輛最節(jié)省費(fèi)用?

查看答案和解析>>

同步練習(xí)冊(cè)答案