【題目】已知二次函數y=x2+bx+c的圖象經過點A(﹣3,6),并與x軸交于點B(﹣1,0)和點C,與y軸交于點E,頂點為P,對稱軸與x軸交于點D
(Ⅰ)求這個二次函數的解析式;
(Ⅱ)連接CP,△DCP是什么特殊形狀的三角形?并加以說明;
(Ⅲ)點Q是第一象限的拋物線上一點,且滿足∠QEO=∠BEO,求出點Q的坐標.
【答案】(Ⅰ)二次函數解析式為y=x2﹣x﹣;(Ⅱ)△DCP是等腰直角三角形,理由見解析;(Ⅲ)點Q坐標為(5,6).
【解析】
(Ⅰ)把A(-3,6),B(-1,0)代入y=x2+bx+c,解方程組即可解決問題.
(Ⅱ)結論:△DCP是等腰直角三角形.求出C、D、E三點坐標即可解決問題.
(Ⅲ)如圖,連接BE、DE.只要證明△EOB≌△EOD,得到∠DEO=∠BEO,所以直線DE與拋物線的交點即為所求的點Q.求出直線DE的解析式,解方程組即可.
(Ⅰ)把A(﹣3,6),B(﹣1,0)代入y=x2+bx+c,
得到,
解得,
∴二次函數解析式為y=x2﹣x﹣.
(Ⅱ)結論:△DCP是等腰直角三角形.
理由:對于拋物線y=x2﹣x﹣,令y=0,則x2﹣x﹣=0,解得x=﹣1或3,
∴點C坐標(3,0),
令x=0則y=﹣,
∴點E坐標(0,﹣),
∵y=x2﹣x﹣=(x﹣1)2﹣2,
∴頂點P坐標(1,﹣2),點D坐標(1,0),
∴CD=PD=2,
∵∠PDC=90°,
∴△PDC是等腰直角三角形.
(Ⅲ)如圖,連接BE、DE.
∵B(﹣1,0),D(1,0),E(0,﹣),
∴OB=OD,OE=OE,∠BOE=∠DOE,
∴△EOB≌△EOD,
∴∠DEO=∠BEO,
∴直線DE與拋物線的交點即為所求的點Q.
設直線DE的解析式為y=kx+b,則有,
解得,
∴直線DE的解析式為y=,
由解得或,
∴點Q坐標為(5,6).
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OAA1的直角邊OA在x軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,0A1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點A2019的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“龜、蟹賽跑趣事”:某天,烏龜和螃蟹在同一直線道路上同起點、同方向、同時出發(fā),分別以不同的速度勻速跑500米。當螃蟹領先烏龜300米時,螃蟹停下來休息并睡著了,當烏龜追上螃蟹的瞬間,螃蟹驚醒了(驚醒時間忽略不計)并立即以原來的速度繼續(xù)跑向終點,并贏得了比賽。在比賽的整個過程中,烏龜和螃蟹的距離(米)與烏龜出發(fā)的時間(分鐘)之間的關系如圖所示,則螃蟹到達終點時,烏龜距終點的距離是______________米。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題10分)在長方形ABCD中,AB=5cm,BC=6cm,點P從點A開始沿邊AB向終點B以1cm/s的速度移動,與此同時,點Q從點C開始沿邊CB向終點B以2cm/s的速度移動,如果P、Q分別從A、C同時出發(fā),當點Q運動到點B時,兩點停止運動.設運動時間為t秒.
(1)填空:BQ=______________cm,PB=_______________cm(用含t的代數式表示);
(2)當t為何值時,PQ的長度等于cm?
(3)是否存在t的值,使得五邊形APQCD的面積等于27?若存在,請求出此時t的值;若不存在,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按指定的方法解下列方程:
(1)2x2-5x-4=0(配方法);
(2)3(x-2)+x2-2x=0(因式分解法);
(3)(a2-b2)x2-4abx=a2-b2(a2≠b2)(公式法).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共4只,某學習小組做摸球試驗,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復.如表是活動進行中的一組統(tǒng)計數據:
摸球的次數n | 100 | 150 | 200 | 500 | 800 | 1 000 |
摸到白球的次數m | 28 | 34 | 48 | 130 | 197 | 251 |
摸到白球的頻率 | 0.28 | 0.23 | 0.24 | 0.26 | 0.246 | 0.251 |
(1)請估計:當n很大時,摸到白球的頻率將會接近 (精確到0.01);
(2)試估算口袋中白種顏色的球有多少只?
(3)請根據估算的結果思考從口袋中先摸出一球,不放回,再摸出一球,這兩只球顏色不同的概率是多少?畫出樹狀圖(或列表)表示所有可能的結果,并計算概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com