【題目】如圖,在平面直角坐標系xOy中,ABCO的頂點A,B坐標分別是(6,0),(0,4).動點P在直線OD解析式為y=x上運動.
(1)若反比例函數(shù)y=圖象過C點,則m=_____.
(2)證明:OD⊥AB;
(3)當以點P為圓心、PB長為半徑的⊙P隨點P運動⊙P與ABCO的邊所在直線相切時,請直接寫出點P的坐標.
【答案】(1)﹣24;(2)見解析;(3)滿足條件的P的坐標為(0,0)或(,2)或(6﹣2,9﹣3).
【解析】
(1)先求出C點的坐標,根據(jù)反比例函數(shù)y=圖象過C點,代入即可解得m的值;
(2)先求出D點的坐標,D(,),根據(jù)OD2+BD2=OB2,構建直角三角形的三邊滿足勾股定理,可得OD⊥AB;
(3)本問分4種情況進行討論,分別是①當⊙P與BC相切時;②當⊙P與OC相切時;③當⊙P與OA相切時;④當⊙P與AB相切時,可根據(jù)這4種情況求出點P的坐標.
(1)解:∵A(6,0),B(0,4),
∴OA=6,OB=4,
∵四邊形OABC是平行四邊形,
∴BC=OA=6,
∴C(﹣6,4).
∵反比例函數(shù)y=圖象過C點,
∴m=﹣24,
故答案為﹣24.
(2)證明:∵A(6,0),B(0,4),
∴直線AB的解析式為y=﹣x+4,
由解得,
∴D(,),
∴BD2=()2+(4﹣)2=,OD2=()2+()2=,
∵OD2+BD2==16=OB2,
∴∠ODB=90°,
∴OD⊥AB.
(3)解:∵OP⊥AB,AB∥OC
∴OP⊥OC,設P(x,x)
①當⊙P與BC相切時,∵動點P在直線y=x上,
∴P與O重合,此時圓心P到BC的距離為OB,
∴P(0,0).
②如圖1中,當⊙P與OC相切時,則OP=BP,△OPB是等腰三角形,作PE⊥y軸于E,則EB=EO,易知P的縱坐標為2,可得P(,2).
③如圖2中,當⊙P與OA相切時,則點P到點B的距離與點P到x軸的距離相等,可得,
解得x=6+2或6﹣2,
∵x=6=2>OA,
∴⊙P不會與OA相切,
∴x=6=2不合題意,
∴P(6﹣2,9﹣3).
④如圖3中,當⊙P與AB相切時,設線段AB與直線OP的交點為G,此時PB=PG,
∵OP⊥AB,
∴∠BGP=∠PBG=90°不成立,
∴此種情形,不存在P.
綜上所述,滿足條件的P的坐標為(0,0)或(,2)或(6﹣2,9﹣3).
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:
若,則稱點Q為點P的“可控變點”.
例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).
(1)點(﹣5,﹣2)的“可控變點”坐標為 ;
(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標y′是7,求“可控變點”Q的橫坐標;
(3)若點P在函數(shù)()的圖象上,其“可控變點”Q的縱坐標y′ 的取值范圍是,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O ,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.
(1)若∠E=500, ∠F=400,求∠A的度數(shù).
(2)探究∠E、∠F、∠A的關系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】節(jié)假日期間向、某商場組織游戲,主持人請三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對應的是a,b,若主持人分別從三位家長和三位孩予中各選一人參加游戲.
若已選中家長A,則恰好選中自己孩子的概率是______.
請用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價元之間符合一次函數(shù)關系,其圖象如圖所示.
求y與x的函數(shù)關系式;
物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角三角形ABC內(nèi)接于⊙O,AD⊥BC,垂足為D.
(1)如圖1, ,BD=DC,求∠B的度數(shù);
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點F,過點B作BG∥AD交⊙O于點G,在AB邊上取一點H,使得AH=BG.求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國務院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進一步普及足球知識,傳播足球文化,我市某區(qū)在中小學舉行了“足球在身邊”知識競賽,各類獲獎學生人數(shù)的比例情況如圖所示,其中獲得三等獎的學生共50名,請結合圖中信息,解答下列問題:
(1)獲得一等獎的學生人數(shù);
(2)在本次知識競賽活動中,A,B,C,D四所學校表現(xiàn)突出,現(xiàn)決定從這四所學校中隨機選取兩所學校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學校的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com