【題目】學校為了解九年級學生對“八禮四儀”的掌握情況,對該年級的500名同學進行問卷測試,并隨機抽取了10名同學的問卷,統(tǒng)計成績如下:
得分 | 10 | 9 | 8 | 7 | 6 |
人數(shù) | 3 | 3 | 2 | 1 | 1 |
(1)計算這10名同學這次測試的平均得分;
(2)如果得分不少于9分的定義為“優(yōu)秀”,估計這 500名學生對“八禮四儀”掌握情況優(yōu)秀的人數(shù);
(3)小明所在班級共有40人,他們全部參加了這次測試,平均分為7.8分.小明的測試成績是8分,小明說,我的測試成績在班級中等偏上,你同意他的觀點嗎?為什么?
【答案】(1)8.6;(2)300;(3)不同意,理由見解析.
【解析】
(1)根據(jù)加權平均數(shù)的計算公式求平均數(shù);(2)根據(jù)表中數(shù)據(jù)求出這10名同學中優(yōu)秀所占的比例,然后再求500名學生中對“八禮四儀”掌握情況優(yōu)秀的人數(shù);(3)根據(jù)平均數(shù)和中位數(shù)的意義進行分析說明即可.
解:(1)
∴這10名同學這次測試的平均得分為8.6分;
(2)(人)
∴這 500名學生對“八禮四儀”掌握情況優(yōu)秀的人數(shù)為300人;
(3)不同意
平均數(shù)容易受極端值的影響,所以小明的測試成績?yōu)?分,并不一定代表他的成績在班級中等偏上,要想知道自己的成績是否處于中等偏上,需要了解班內學生成績的中位數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸交于點A,與y軸交于點B,點C是AB的中點,∠ECD繞點C按順時針旋轉,且∠ECD=45°,∠ECD的一邊CE交y軸于點F,開始時另一邊CD經(jīng)過點O,點G坐標為(-2,0),當∠ECD旋轉過程中,射線CD與x軸的交點由點O到點G的過程中,則經(jīng)過點B、C、F三點的圓的圓心所經(jīng)過的路徑長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知D是等邊△ABC邊AB上的一點,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC和BC上.如果AD:DB=1:2,則CE:CF的值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若整數(shù)a使關于x的分式方程=2有整數(shù)解,且使關于x的不等式組至少有4個整數(shù)解,則滿足條件的所有整數(shù)a的和是( 。
A.﹣14B.﹣17C.﹣20D.﹣23
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,點E是AD邊上的點,連接BE.
(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長;
(2)如圖2,點F是平行四邊形外一點,FB=CD.連接BF、CF,CF與BE相交于點G,若∠FBE+∠ABC=180°,點G是CF的中點,求證:2BG+ED=BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖像經(jīng)過點A(-1,0)、B(0,2).
(1)b= (用含有a的代數(shù)式表示),c= ;
(2)點O是坐標原點,點C是該函數(shù)圖像的頂點,若△AOC的面積為1,則a= ;
(3)若x>1時,y<5.結合圖像,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)y與自變量x的部分對應值如下表:
(1)求該二次函數(shù)的表達式;
(2)該二次函數(shù)圖像關于x軸對稱的圖像所對應的函數(shù)表達式 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點C順時針方向旋轉得到△A′B′C,記旋轉角為α,當90°<α<180°時,作A′D⊥AC,垂足為D,A′D與B′C交于點E.
(1)如圖1,當∠CA′D=15°時,作∠A′EC的平分線EF交BC于點F.
①寫出旋轉角α的度數(shù);
②求證:EA′+EC=EF;
(2)如圖2,在(1)的條件下,設P是直線A′D上的一個動點,連接PA,PF,若AB=,求線段PA+PF的最小值.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC分別交AC的延長線于點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)若AC=8,CE=4,求弧BD的長.(結果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com