精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H.
(1)求直線AC的函數關系式;
(2)連接BM,動點P從點A出發(fā),沿折線A-B-C方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數關系式(要求寫出自變量t的取值范圍).

【答案】分析:(1)已知A點的坐標,就可以求出OA的長,根據OA=OC,就可以得到C點的坐標,根據待定系數法就可以求出函數解析式.
(2)點P的位置應分P在AB和BC上,兩種情況進行討論.當P在AB上時,△PMB的底邊PB可以用時間t表示出來,高是MH的長,因而面積就可以表示出來.
解答:解:(1)過點A作AE⊥x軸,垂足為E,(如圖)
∵A(-3,4),
∴AE=4,OE=3,
∴OA=5,(1分)
∵四邊形ABCO為菱形,
∴OC=CB=BA=OA=5,
∴C(5,0),(2分)
設直線AC的解析式為y=kx+b

解得:
∴直線AC的函數關系式為:;(4分)

(2)由(1)得M(0,),
,
當點P在AB邊上運動時,由題意得:OH=4,
∴HM=,
,(6分)
當點P在BC邊上運動時,記為P1,
∵∠OCM=∠BCM,CO=CB,CM=CM,
,
∴S=P1B•BM=(2t-5)
∴S=.(8分)
點評:本題主要考查了利用待定系數法求函數的解析式,及求關于三角形面積的函數問題,注意分情況討論.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案