【題目】如圖,在等腰直角中, ,的角平分線的外角平分線交于點(diǎn),分別交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn),交的延長(zhǎng)線于點(diǎn),則下列結(jié)論:;②;③為等腰直角三角形:.其中正確的結(jié)論有__________

【答案】①②③

【解析】

利用等腰直角三角形的內(nèi)外角平分線的性質(zhì)得到∠AFB=45°,再利用FHAD易證△FAB≌△FGB,△DFG≌△HFA,從而進(jìn)行判定.

BE是∠ABC的角平分線,AD是∠BAC外角平分線,

∴∠AFB=ACB=45°,故①正確;

FHAD,

∴∠AFB=BFG=45°,

又∵FB=FB,∠ABF=FBG,

∴△FAB≌△FGB,

FG=FA,

利用角的計(jì)算可知,∠FAE=FEA=67.5°,

FA=FE,

FE=FG,故②正確;

∵∠DFG=HFA=90°,

FG=FA,易證∠FGD=FAH,

∴△DFG≌△HFA

DF=FH,

∴△DFH為等腰直角三角形,故③正確;

由△DFG≌△HFA可得DG=AH

由△FAB≌△FGB可得BG=AB,

BD=DG+GB,BD=AH+AB,故④錯(cuò)誤,

故答案為:①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育課上,老師為了解女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測(cè)試,進(jìn)球數(shù)的統(tǒng)計(jì)如圖所示.

(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);

(2)投球4次,進(jìn)球3個(gè)以上(含3個(gè))為優(yōu)秀,全校有女生1200人,估計(jì)為“優(yōu)秀”等級(jí)的女生約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蘭州中山橋位于蘭州濱河路中段白塔山下、金城關(guān)前,是黃河上第一座真正意義上的橋梁,有天下黃河第一橋之美譽(yù).它像一部史詩(shī),記載著蘭州古往今來(lái)歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準(zhǔn)備測(cè)量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測(cè)得∠CAB=36°,小剛在B處測(cè)得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結(jié)果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張三角形紙片,其中,,,現(xiàn)小林將紙片做三次折疊:第一次使點(diǎn)落在處;將紙片展平做第二次折疊,使點(diǎn)若在處;再將紙片展平做第三次折疊,使點(diǎn)落在處,這三次折疊的折痕長(zhǎng)依次記為,則的大小關(guān)系是(從大到小)__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,長(zhǎng)方形紙片ABCD的長(zhǎng)AD9cm,寬AB3cm,將其折疊,使點(diǎn)D與點(diǎn)B重合.

求:(1)折疊后DE的長(zhǎng);(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】-2,-1,1,2,3這五個(gè)數(shù)中隨機(jī)抽取一數(shù),作為函數(shù)y=mx2+2mx+2中的m的值,若能使函數(shù)與x軸有兩個(gè)不同的交點(diǎn)A、B,與y軸的交點(diǎn)為C,且△ABC的面積大于的概率為:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?

(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫(huà)出樹(shù)狀圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)口袋中裝有4個(gè)完成相同的小球,把它們分別標(biāo)號(hào)1、2、3、4,小明從中隨機(jī)地摸出一個(gè)球.

(1)直接寫(xiě)出小明摸出的球標(biāo)號(hào)為4的概率;

(2)若小明摸到的球不放回,記小明摸出球的標(biāo)號(hào)為x,然后由小強(qiáng)再隨機(jī)摸出一個(gè)球記為y.小明和小強(qiáng)在此基礎(chǔ)上共同協(xié)商一個(gè)游戲規(guī)則:當(dāng)x>y時(shí),小明獲勝,否則小強(qiáng)獲勝.請(qǐng)問(wèn)他們制定的游戲規(guī)則公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC 是等邊三角形,D 為 CB 延長(zhǎng)線上一點(diǎn),E 為 BC 延長(zhǎng)線上點(diǎn).

(1)當(dāng) BD、BC CE 滿足什么條件時(shí),△ADB∽△EAC?

(2)當(dāng)△ADB∽△EAC 時(shí),求∠DAE 的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案