【題目】如圖,AD∥BC,∠D=90°.
(1)如圖1,若∠DAB的平分線與∠CBA的平分線交于點P,試問:點P是線段CD的中點嗎?為什么?
(2)如圖2,如果P是DC的中點,BP平分∠ABC,∠CPB=35°,求∠PAD的度數(shù)為多少?
【答案】
(1)解:點P是線段CD的中點.理由如下:
過點P作PE⊥AB于E,
∵AD∥BC,∠D=90°,
∴∠C=180°﹣∠D=90°,即PC⊥BC,
∵∠DAB的平分線與∠CBA的平分線交于點P,
∴PD=PE,PC=PE,
∴PC=PD,
∴點P是線段CD的中點;
(2)解:過點P作PE⊥AB于E,
∵AD∥BC,∠D=90°,
∴∠C=180°﹣∠D=90°,即PC⊥BC.
在△PBE與△PBC中,
,
∴△PBE≌△PBC(AAS),
∴∠EPB=∠CPB=35°,PE=PC,
∵PC=PD,
∴PD=PE,
在Rt△PAD與Rt△PAE中,
,
∴Rt△PAD≌Rt△PAE(HL),
∴∠APD=∠APE,
∵∠APD+∠APE=180°﹣2×35°=110°,
∴∠APD=55°,
∴∠PAD=90°﹣∠APD=35°.
【解析】(1)過點P作PE⊥AB于E,根據(jù)平行線的性質(zhì)求出∠C=90°,即PC⊥BC,再根據(jù)角平分線上的點到角的兩邊距離相等可得PD=PE,PC=PE,從而得到PC=PD,然后根據(jù)線段中點的定義解答;(2)過點P作PE⊥AB于E,根據(jù)平行線的性質(zhì)求出∠C=90°,即PC⊥BC,利用AAS證明△PBE≌△PBC,得出∠EPB=∠CPB=35°,PE=PC,由PC=PD,等量代換得到PD=PE,再根據(jù)HL證明Rt△PAD≌Rt△PAE,得出∠APD=∠APE=55°,那么∠PAD=90°﹣∠APD=35°.
【考點精析】利用角平分線的性質(zhì)定理對題目進(jìn)行判斷即可得到答案,需要熟知定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計,結(jié)果如表所示:
組號 | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形統(tǒng)計圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對應(yīng)的扇形的圓心角的度數(shù).
(3)將在第一組內(nèi)的兩名選手記為A1,A2,在第四組內(nèi)的兩名選手記為B1,B2, 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線EF,CD相交于點O,OA⊥OB,且OC平分∠AOF.
(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù).(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次植樹活動中,某班共有a名男生每人植樹3棵,共有b名女生每人植樹2棵,則該班同學(xué)一共植樹棵.(用含a,b的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com