【題目】如圖,在正五邊形ABCDE中每個(gè)內(nèi)角是108°,請(qǐng)使用無(wú)刻度的直尺畫出一個(gè)以B,CDP為頂點(diǎn)的菱形并說(shuō)明理由.

【答案】連結(jié)AD,BE相交于點(diǎn)P,則四邊形BCDP為所求作的菱形.理由見(jiàn)解析.

【解析】

連結(jié)AD,BE相交于點(diǎn)P,則四邊形BCDP為菱形.首先由正五邊形的性質(zhì)可得AB=BC=CD,BCPD,CDBP,得到四邊形BCDP是平行四邊形,再根據(jù)有一組鄰邊相等的平行四邊形是菱形即可證.

連結(jié)AD,BE相交于點(diǎn)P,則四邊形BCDP為所求作的菱形.

理由:∵正五邊形ABCDE的內(nèi)角108°,∴∠C=ABC=BAE=108°AB=BC=CD=AE,∴∠ABE=36°,∴∠EBC=ABC-ABE=72°,∴∠EBC+C=180°,∴BCPD

同理得:CDBP,∴四邊形BCDP是平行四邊形.

又∵BC=CD,∴四邊形BCDP是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線L上有三個(gè)正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+cm=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:b2﹣4ac<0;②abc>0;③ab+c<0;④m>﹣2,其中,正確的個(gè)數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB8cm,B=300, ACB的平分線交⊙OD,連接AD

1)求BC的長(zhǎng);

2)求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的邊OAx軸上,將平行四邊形沿對(duì)角線AC對(duì)折,AO的對(duì)應(yīng)線段為AD,且點(diǎn)D,CO在同一條直線上,ADBC交于點(diǎn)E.

1)求證:△ABC≌△CDA.

2)若直線AB的函數(shù)表達(dá)式為,求三角線ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在愛(ài)滿揚(yáng)州慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;

2)求這50名同學(xué)捐款的平均數(shù);

3)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從如圖所示的二次函數(shù)的圖象中,觀察得出下面五條信息:①;②;③;④;⑤.你認(rèn)為其中正確信息的個(gè)數(shù)為(

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是1,23,4的四張撲克牌背面朝上,洗勻后放在桌面上.

1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是 ;

2)從中隨機(jī)抽出二張牌,兩張牌牌面數(shù)字的和是5的概率是 ;

3)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用畫樹(shù)狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=20°,A、B分別為射線OM、ON上兩定點(diǎn),且OA=2OB=4,點(diǎn)PQ分別為射線OM、ON兩動(dòng)點(diǎn),當(dāng)P、Q運(yùn)動(dòng)時(shí),線段AQ+PQ+PB的最小值是( 。

A.3B.C.2D.

查看答案和解析>>

同步練習(xí)冊(cè)答案