【題目】已知,AB為⊙O的直徑,C,D為⊙O上兩點(diǎn),過(guò)點(diǎn)D的直線EF與⊙O相切,分別交BA,BC的延長(zhǎng)線于點(diǎn)E,FBFEF

I)如圖①,若∠ABC50°,求∠DBC的大小;

(Ⅱ)如圖②,若BC2,AB4,求DE的長(zhǎng).

【答案】125°;(22

【解析】

1)如圖1,連接OD,BD,由EF與⊙O相切,得到ODEF,由于BFEF,得到ODBF,得到∠AOD=∠ABC50°,由外角的性質(zhì)得到結(jié)果;

2)如圖2,連接AC,OD,根據(jù)AB為⊙O的直徑,得出∠ACB90°,由直角三角形的性質(zhì)得到∠CAB30°,于是ACABcos30°2,AHAOcos30°,根據(jù)三角形的中位線的性質(zhì)解得結(jié)果.

解(1)如圖1,連接ODBD,

EF與⊙O相切,

ODEF,

BFEF

ODBF,

∴∠AOD=∠ABC50°

ODOB,

∴∠OBD=∠ODBAOD25°

∴∠DBC=∠OBC-OBD25°

2)如圖2,連接AC,OD

AB為⊙O的直徑,

∴∠ACB90°,

BC2,AB4,

∴∠CAB30°

ACABcos30°2

∵∠ODF=∠F=∠HCO90°,

∴∠DHC90°,

AHAOcos30°

∵∠HAO30°,

OHOAOD,

ACEF

DE2AH2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是學(xué)習(xí)分式方程應(yīng)用時(shí),老師板書(shū)的問(wèn)題和兩名同學(xué)所列的方程.

根據(jù)以上信息,解答下列問(wèn)題:

1)甲同學(xué)所列方程中的表示_________________;乙同學(xué)所列方程中的表示________________;

2)兩個(gè)方程中任選一個(gè),解方程并回答老師提出的問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在線段上,在的同側(cè)作等腰和等腰,分別交于點(diǎn)、.對(duì)于下列結(jié)論:

;.其中正確的是(

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)MN;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AB=AC,點(diǎn)DBC上一動(dòng)點(diǎn),連接AD,過(guò)點(diǎn)AAEAD,并且始終保持AE=AD,連接CE

1)求證:ABD≌△ACE

2)若AF平分∠DAEBCF,探究線段BD,DF,FC之間的數(shù)量關(guān)系,并證明;

3)在(2)的條件下,若BD=3CF=4,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD長(zhǎng)與寬的比為32,點(diǎn)E,F分別在邊AB、BC上,tan1,tan2,則cos(∠1+2)=( 。

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)Am6),B6,1)在反比例函數(shù)圖象上,作直線AB,連接OA、OB

1)求反比例函數(shù)的表達(dá)式和m的值;

2)求AOB的面積;

3)如圖2,E是線段AB上一點(diǎn),作ADx軸于點(diǎn)D,過(guò)點(diǎn)Ex軸的垂線,交反比例函數(shù)圖象于點(diǎn)F,若EFAD,求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在三角形中,,關(guān)于對(duì)稱

(1)將圖1中的為旋轉(zhuǎn)中心,逆時(shí)針?lè)较蛐D(zhuǎn)角,使,得到如圖2所示的,分別延長(zhǎng)交于點(diǎn),則四邊形的形狀是   ;

(2)將圖1中的為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)角,使,得到如圖3所示的,連接,得到四邊形,請(qǐng)判斷四邊形的形狀,并說(shuō)明理由;

(3)如圖3中,,將沿著射線方向平移,得到,連接,使四邊形恰好為正方形,請(qǐng)直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年中國(guó)北京世界園藝博覽會(huì)已于2019429日在北京市延慶區(qū)開(kāi)展,吸引了大批游客參觀游覽.五一小長(zhǎng)假期間平均每天入園人數(shù)大約是8萬(wàn)人,佳佳等5名同學(xué)組成的學(xué)習(xí)小組,隨機(jī)調(diào)查了五一假期中入園參觀的部分游客,獲得了他們?cè)趫@內(nèi)參觀所用時(shí)間,并對(duì)數(shù)據(jù)進(jìn)行整理,描述和分析,下面給出了部分信息:

a.參觀時(shí)間的頻數(shù)分布表如下:

時(shí)間(時(shí))

頻數(shù)(人數(shù))

頻率

25

0.050

85

160

0.320

139

0.278

0.100

41

0.082

合計(jì)

1.000

b.參觀時(shí)間的頻數(shù)分布直方圖如圖:

根據(jù)以上圖表提供的信息,解答下列問(wèn)題:

1)這里采用的調(diào)查方式是   ;

2)表中   ,   ,   ;

3)并請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

4)請(qǐng)你估算五一假期中平均每天參觀時(shí)間小于4小時(shí)的游客約有多少萬(wàn)人?

查看答案和解析>>

同步練習(xí)冊(cè)答案