【題目】如圖1,M是鐵絲AD的中點(diǎn),將該鐵絲首尾相接折成ABC,且B=30°,C=100°,如圖2則下列說法正確的是( )

A點(diǎn)M在AB上

B點(diǎn)M在BC的中點(diǎn)處

C點(diǎn)M在BC上,且距點(diǎn)B較近,距點(diǎn)C較遠(yuǎn)

D點(diǎn)M在BC上,且距點(diǎn)C較近,距點(diǎn)B較遠(yuǎn)

【答案】C

【解析】

試題分析:根據(jù)鈍角三角形中鈍角所對的邊最長可得AB>AC,取BC的中點(diǎn)E,求出AB+BE>AC+CE,再根據(jù)三角形的任意兩邊之和大于第三邊得到AB<AD,從而判定AD的中點(diǎn)M在BE上

試題解析:∵∠C=100°

AB>AC,如圖,取BC的中點(diǎn)E,則BE=CE,

AB+BE>AC+CE,

由三角形三邊關(guān)系,AC+BC>AB,

AB<AD,

AD的中點(diǎn)M在BE上,

即點(diǎn)M在BC上,且距點(diǎn)B較近,距點(diǎn)C較遠(yuǎn)

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算: + ﹣(﹣1)2017
(2)求滿足條件的x值:(x﹣1)2=9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,交BC于點(diǎn)E.

(1)求證:AC是O的切線;

(2)若OB=10,CD=8,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=﹣2x+1不經(jīng)過第_____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”、“AAS”“SSS”) 和直角三角形全等的判定方法(即“HL”) , 我們繼續(xù)對“兩個(gè)三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.

初步思考

不妨將問題用符號(hào)語言表示為: △ABC△DEF, AC = DF, BC = EF, ∠B =∠E,

然后, 對∠B進(jìn)行分類, 可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

深入探究

第一種情況: 當(dāng)∠B是直角時(shí), △ABC≌△DEF.

(1) 如圖①, △ABC△DEF, AC = DF, BC = EF, ∠B =∠E = 90°, 根據(jù)_____________, 可以知道Rt△ABC≌Rt△DEF.

第二種情況: 當(dāng)∠B是鈍角時(shí), △ABC≌△DEF.

 

(2) 如圖②, △ABC△DEF, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是鈍角.

求證: △ABC≌△DEF.

第三種情況: 當(dāng)∠B是銳角時(shí), △ABC△DEF不一定全等.

 

(3) △ABC△DEF, AC = DF, BC = EF, ∠B = ∠E, 且∠B、∠E都是銳角, 請你用尺規(guī)在圖③中作出△DEF, 使△DEF△ABC不全等. (不寫作法, 保留作圖痕跡)

(4) ∠B還要滿足什么條件, 就可以使△ABC≌△DEF ? 請直接寫出結(jié)論: △ABC△DEF, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是銳角, __________, △ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是某村一遍若干畝土地的示意圖,在黨的十六大精神的指導(dǎo)下,為進(jìn)一步加大農(nóng)村經(jīng)濟(jì)結(jié)構(gòu)調(diào)整的力度,某村決定把這塊土地平均分給四位花農(nóng)種植,請你幫他們分一分,提供兩種分法.要求:畫出圖形,并簡要說明分法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】未來三年,國家將投入8 500億元用于緩解群眾“看病難,看病貴”問題.將8 500億元用科學(xué)記數(shù)法表示為

A.0.85×104億元
B.8.5×103億元
C.8.5×104億元
D.85×102億元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接“五一”節(jié)的到來,某食品連鎖店對某種商品進(jìn)行了跟蹤調(diào)查,發(fā)現(xiàn)每天它的銷售價(jià)與銷售量之間有如下關(guān)系:

每千克售價(jià)(元)

25

24

23

15

每天銷售量(千克)

30

32

34

50

如果單價(jià)從最高25元/千克下調(diào)到x元/千克時(shí),銷售量為y千克,已知y與x之間的函數(shù)關(guān)系是一次函數(shù):

(1)求y與x之間的函數(shù)解析式;(不寫定義域)

(2)若該種商品成本價(jià)是15元/千克,為使“五一”節(jié)這天該商品的銷售總利潤是200元,那么這一天每千克的銷售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(﹣3)2的結(jié)果是(
A.﹣6
B.6
C.﹣9
D.9

查看答案和解析>>

同步練習(xí)冊答案