【題目】小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.?huà)寢?:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標(biāo)系中,小亮和媽媽的行進(jìn)路程s(km)與北京時(shí)間t(時(shí))的函數(shù)圖象如圖所示.根據(jù)圖象得到下列結(jié)論,其中錯(cuò)誤的是(
A.小亮騎自行車的平均速度是10km/h
B.媽媽比小亮提前0.5小時(shí)到達(dá)姥姥家
C.媽媽在距家12km處追上小亮
D.9:00媽媽追上小亮

【答案】A
【解析】解:由圖象可知, 小亮騎自行車的平均速度是:24÷(10﹣8)=12km/h,故選項(xiàng)A錯(cuò)誤;
媽媽比小亮提前到姥姥家的時(shí)間是:10﹣9.5=0.5小時(shí),故選項(xiàng)B正確;
媽媽追上小明時(shí)所走的路程是:12×(9﹣8)=12km,故選項(xiàng)C正確;
由圖象可知,9:00媽媽追上小亮,故選項(xiàng)D正確;
故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算中正確的是( )
A.a3a2=a6
B.(a32=a9
C.a6÷a6=0
D.a3+a3=2a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,點(diǎn)P、Q分別是AB、AC上的一動(dòng)點(diǎn),且滿足BP=AQ,D是BC的中點(diǎn).
(1)求證:△PDQ是等腰直角三角形;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形APDQ是正方形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(  )

A. (x3)2=x5 B. (-x)5=-x5

C. x3·x2=x6 D. 3x2+2x3=5x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把方程3x2﹣1=4x化為一般形式是: , 其一次項(xiàng)系數(shù)是 , 常數(shù)項(xiàng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(3x+a)(x﹣2)的乘積中不含x一次項(xiàng),則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個(gè)老年活動(dòng)中心,這樣必須把1200立方米的生活垃圾運(yùn)走:
(1)假如每天能運(yùn)x立方米,所需時(shí)間為y天,寫出y與x之間的函數(shù)表達(dá)式;
(2)若每輛拖拉機(jī)一天能運(yùn)12立方米,則5輛這樣的拖拉機(jī)要用多少天才能運(yùn)完?
(3)在(2)的情況下,運(yùn)了8天后,剩下的任務(wù)要在不超過(guò)6天的時(shí)間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機(jī)才能按時(shí)完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程
(1)x2+3x=0
(2)49=x2﹣2x﹣50(用配方法解)

查看答案和解析>>

同步練習(xí)冊(cè)答案