【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,在AD上截取AE=AB,連接BE,EO,并求∠BEO的角度(要求:尺規(guī)作圖,保留痕跡,不寫作法)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=5,點E、F、G、H分別在AD、AB、BC、CD上,且AF=CG=1,BE=DH=2,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,設(shè)甲、乙、丙、丁分別表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,則敘述正確的是( )
A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等
C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正方形ABCD對角線AC上一點,點E在BC上,且PE=PB.
(1)求證:PE=PD;
(2)求∠PED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】丹尼斯超市舉行有獎促銷活動:顧客凡一次性購買滿元者即可獲得一次搖獎機會.搖獎機是一個圓形轉(zhuǎn)盤,被等分成個扇形,如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅黃或藍(lán)色區(qū)域,顧客就可以分別獲得一、二、三等獎獎金依次為元、元、元一次性購物滿元者,如果不搖獎可返還獎金元.
(1)搖獎一次,獲一等獎、二等獎、三等獎的概率分別是多少?
(2)小李一次性購物滿元他是參與搖獎劃算,還是領(lǐng)元現(xiàn)金劃算?請你幫他算算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達(dá)C點,測得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m).
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完全平方公式:(a±b)2=a2±2ab+b2適當(dāng)?shù)淖冃危梢越鉀Q很多的數(shù)學(xué)問題.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因為a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根據(jù)上面的解題思路與方法,解決下列問題:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如圖,點C是線段AB上的一點,以AC、BC為邊向兩邊作正方形,設(shè)AB=5,兩正方形的面積和S1+S2=17,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點,DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+b與坐標(biāo)軸交于C,D兩點,直線AB與坐標(biāo)軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).
(1)求點A,C的坐標(biāo);
(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經(jīng)過點E,求k的值;
(3)在(2)的條件下,點M在直線CD上,坐標(biāo)平面內(nèi)是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com