【題目】為積極宣傳國家相關(guān)政策,某村在一山坡的頂端的平地上豎立一塊宣傳牌.小明為測得宣傳牌的高度,他站在山腳處測得宣傳牌的頂端的仰角為,已知山坡的坡度,山坡的長度為米,山坡頂端與宣傳牌底端的水平距離為2米,求宣傳牌的高度(精確到1米)

(參考數(shù)據(jù):,,,

【答案】宣傳牌的高度約為4.

【解析】

延長AB CE于點E,過點DDFCE于點F,構(gòu)造矩形BDFE和直角CDF、直角ACE,設(shè)DF=x米,則CF=2x米,由矩形的性質(zhì)和勾股定理借助于方程求得x的值,然后通過解直角ACE來求AB的值.

解:延長于點,過點于點,

則四邊形是矩形,

,.

中,

設(shè)米,則.

由勾股定理得

解得,則米,米,

.

中,

,

,

(米).

答:宣傳牌的高度約為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】E-learning即為在線學(xué)習(xí),是一種新型的學(xué)習(xí)方式.某網(wǎng)站提供了A、B兩種在線學(xué)習(xí)的收費方式.A種:在線學(xué)習(xí)10小時(包括10小時)以內(nèi),收取費用5元,超過10小時時,在收取5元的基礎(chǔ)上,超過部分每小時收費0.6元(不足1小時按1小時計);B種:每月的收費金額(元)與在線學(xué)習(xí)時間是(時)之間的函數(shù)關(guān)系如圖所示.

1)按照B種方式收費,當(dāng)時,求關(guān)于的函數(shù)關(guān)系式.

2)如果小明三月份在這個網(wǎng)站在線學(xué)習(xí),他按照A種方式支付了20元,那么在線學(xué)習(xí)的時間最多是多少小時?如果該月他按照B 種方式付費,那么他需要多付多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,,,,點是邊上一個動點(不與、重合),以點為圓心,為半徑作與射線交于點;以點為圓心,為半徑作,設(shè)

1)如圖,當(dāng)點與點重合時,求的值;

2)當(dāng)點在線段上,如果的另一個交點在線段上時,設(shè),試求之間的函數(shù)解析式,并寫出的取值范圍;

3)在點的運動的過程中,如果與線段只有一個公共點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線ACBD相交于點O,BD2AD,EF、G分別是OC、ODAB的中點,下列結(jié)論:①BEAC②EGEF;EFG≌△GBE④EA平分∠GEF;四邊形BEFG是菱形.其中正確的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標(biāo);

3)在對稱軸上是否存在一點M,使ANM的周長最小.若存在,請求出M點的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AFBC于點E,延長BC到點D,連接OA,AD,使得∠FAC=AOD,∠D=BAF

(1)求證:AD是⊙O的切線;

(2)若⊙O的半徑為5CE=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在梯形ABCD中,ADBC,AB=BC,DCBC,且AD=1DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q

(1)AB的長;

(2)當(dāng)BQ的長為時,請通過計算說明圓P與直線DC的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點、、在直線上,點、、在直線上,若,從如圖所示的位置出發(fā),沿直線向右勻速運動,直到重合.運動過程中與矩形重合部分的面積隨時間變化的圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的頂點A、D分別落在x軸、y軸,OD=2OA=6,ADAB=31.則點B的坐標(biāo)是_______

查看答案和解析>>

同步練習(xí)冊答案