【題目】如圖,在△ABC中,AB = AC,點D是邊BC的中點,過點A、D分別作BC與AB的平行線,相交于點E,連結(jié)EC、AD.

求證:四邊形ADCE是矩形.

【答案】證明見解析

【解析】試題分析:先由AB=AC,點D是邊BC的中點,根據(jù)等腰三角形三線合一的性質(zhì)得出BD=CD,ADBC,再由AEBD,DEAB,得出四邊形AEDB為平行四邊形,那么AE=BD=CD,又AEDC,根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形ADCE是平行四邊形,又∠ADC=90°,根據(jù)有一個角是直角的平行四邊形即可證明四邊形ADCE是矩形;

試題解析:∵AB=AC,點D是邊BC的中點,

BD=CD,ADBC,

∴∠ADC=90°.

AEBD,DEAB,

∴四邊形AEDB為平行四邊形,

AE=BD=CD,

又∵AEDC,

∴四邊形ADCE是平行四邊形,

∵∠ADC=90°,

∴四邊形ADCE是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式:

;②;③;④;⑤;⑥為常數(shù));⑦為常數(shù)).是二次函數(shù)的有( )

A. 1個 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖鋼架中,∠A=,焊上等長的鋼條P1P2, P2P3, P3P4, P4P5……來加固鋼架.P1A= P1P2,且恰好用了4根鋼條,α的取值范圈是( )

A.15°≤ a <18°

B.15°< a ≤18°

C.18°≤ a <22.5°

D.18° < a ≤ 22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下文字并解決問題:對于形如這樣的二次三項式,我們可以直接用公式法把它分解成的形式,但對于二次三項式,就不能直接用公式法分解了.此時,我們可以在中間先加上一項,使它與的和構(gòu)成一個完全平方式,然后再減去,則整個多項式的值不變.即:,像這樣,把一個二次三項式變成含有完全平方式的形式的方法,叫做配方法.

利用配方法因式分解:

如果,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為米的籬笆圍成,已知墻長為米.設(shè)這個苗圃園垂直于墻的一邊的長為米某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為米的籬笆圍成,已知墻長為米.設(shè)這個苗圃園垂直于墻的一邊的長為

用含的代數(shù)式表示平行于墻的一邊的長為________米,的取值范圍為________;

這個苗圃園的面積為平方米時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABCD中,,,射線AE平分動點P的速度沿AD向終點D運動,過點PAE于點Q,過點P,過點Q,交PM于點設(shè)點P的運動時間為,四邊形APMQ與四邊形ABCD重疊部分面積為

______用含t的代數(shù)式表示

當(dāng)點M落在CD上時,求t的值.

St之間的函數(shù)關(guān)系式.

如圖2,連結(jié)AM,交PQ于點G,連結(jié)AC、BD交于點H,直接寫出t為何值時,GH與三角形ABD的一邊平行或共線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+bkb為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=n為常數(shù)且n≠0)的圖象在第二象限交于點CCDx軸,垂直為D,若OB=2OA=3OD=6

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求兩函數(shù)圖象的另一個交點坐標(biāo);

3)直接寫出不等式;kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連結(jié)AE、DE、DC

①求證:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D,E分別在正ABC的邊ABBC上,且BDCE,CDAE交于點F

1)①求證:ACE≌△CBD;②求∠AFD的度數(shù);

2)如圖2,若D,E,MN分別是ABC各邊上的三等分點,BMCD交于Q.若ABC的面積為S,請用S表示四邊形ANQF的面積   ;

3)如圖3,延長CD到點P,使∠BPD30°,設(shè)AFa,CFb,請用含ab的式子表示PC長,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案