【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(不與A,B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得線段PE,連接BE,則∠CBE等于( )
A. 75° B. 60° C. 45° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC、BD交于O點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形OCED為矩形;
(2)在BC上截取CF=CO,連接OF,若AC=16,BD=12,求四邊形OFCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,BD,CE是的高,點(diǎn)P在BD的延長線上,,點(diǎn)Q在CE上,,探究PA與AQ之間的關(guān)系;
(2)若把(1)中的改為鈍角三角形,,是鈍角,其他條件不變,上述結(jié)論是否成立?畫出圖形并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB→BC→CD以3cm/s的速度向終點(diǎn)D勻速運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)沿AD以1cm/s的速度向終點(diǎn)D勻速運(yùn)動(dòng),設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為ts,△APQ的面積為Scm2,下列選項(xiàng)中能表示S與t之間函數(shù)關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是⊙O直徑CA的延長線上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線;
(2)若點(diǎn)E是劣弧BC上一點(diǎn),弦AE與BC相交于點(diǎn)F,且CF=9,cos∠BFA=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于給定的一次函數(shù)y=ax+b(a≠0),把形如的函數(shù)稱為一次函數(shù)y=ax+b(a≠0)的衍生函數(shù).已知矩形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,0),B(1,2),C(-3,2),D(-3,0).
(1)已知函數(shù)y=2x+l.
①若點(diǎn)P(-1,m)在這個(gè)一次函數(shù)的衍生函數(shù)圖像上,則m= .
②這個(gè)一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點(diǎn)坐標(biāo)分別為 .
(2)當(dāng)函數(shù)y=kx-3(k>0)的衍生函數(shù)的圖象與矩形ABCD有2個(gè)交點(diǎn)時(shí),k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則y1>y2.
其中說法正確的是( 。
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com