【題目】如圖,點(diǎn)OAPB的平分線上,OPA相切于點(diǎn)C

1)求證:直線PBO相切;

2PO的延長(zhǎng)線與O交于點(diǎn)E.若O的半徑為3,PC=4.求弦CE的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2

【解析】試題(1)連接OC,作ODPBD點(diǎn).證明OD=OC即可.根據(jù)角的平分線性質(zhì)易證;

2)設(shè)POOF,連接CF.根據(jù)勾股定理得PO=5,則PE=8.證明PCF∽△PEC,得CFCE=PCPE=12.根據(jù)勾股定理求解CE

試題解析:(1)證明:連接OC,作ODPBD點(diǎn).

∵⊙OPA相切于點(diǎn)C, OCPA

2)解:設(shè)POOF,連接CF

OC=3,PC=4,PO=5,PE=8

∵⊙OPA相切于點(diǎn)C, ∴∠PCF=E

∵∠CPF=EPC, ∴△PCF∽△PEC

CFCE=PCPE=48=12

EF是直徑, ∴∠ECF=90°

設(shè)CF=x,則EC=2x

x2+2x2=62, 解得x=

EC=2x=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y3x+3x軸于A點(diǎn),交y軸于B點(diǎn),過(guò)A、B兩點(diǎn)的拋物線交x軸于另一點(diǎn)C(3,0)

(1)求拋物線的解析式;

(2)求拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點(diǎn)F,點(diǎn)EAB的延長(zhǎng)線上,射線EM經(jīng)過(guò)點(diǎn)C,且∠ACE+AFO=180°.

(1)求證:EM是⊙O的切線;

(2)若∠A=E,BC=,求陰影部分的面積.(結(jié)果保留和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)平面內(nèi),小明站在點(diǎn)A(﹣100)處觀察y軸,眼睛距地面1.5米,他的前方5米處有一堵墻DC,若墻高DC2米,則小明在y軸上的盲區(qū)(即OE的長(zhǎng)度)為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y=(m為常數(shù),且m≠0)的圖象交于點(diǎn)A(﹣2,1)、B(1,n).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連結(jié)OA、OB,求△AOB的面積;

(3)直接寫(xiě)出當(dāng)y1<y2<0時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知直線y=-x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),C點(diǎn)坐標(biāo)為(﹣2,0).

(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的解析式;

(2)如果M為拋物線的頂點(diǎn),聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是圓O的切線,切點(diǎn)為A,AB是圓O的弦。過(guò)點(diǎn)BBC//AD,交圓O于點(diǎn)C,連接AC,過(guò)點(diǎn)CCD//AB,交AD于點(diǎn)D。連接AO并延長(zhǎng)交BC于點(diǎn)M,交過(guò)點(diǎn)C的直線于點(diǎn)P,且BCP=ACD。

1判斷直線PC與圓O的位置關(guān)系,并說(shuō)明理由:

2 AB=9BC=6,求PC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩組卡片共5張,A組的三張分別寫(xiě)有數(shù)字2,4,6B組的兩張分別寫(xiě)有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別

1隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一條河的北岸有兩個(gè)目標(biāo)M、N,現(xiàn)在位于它的對(duì)岸設(shè)定兩個(gè)觀測(cè)點(diǎn)A、B.已知ABMN,在A點(diǎn)測(cè)得∠MAB=60°,在B點(diǎn)測(cè)得∠MBA=45°,AB=600米.

(1)求點(diǎn)MAB的距離;(結(jié)果保留根號(hào))

(2)B點(diǎn)又測(cè)得∠NBA=53°,求MN的長(zhǎng).(結(jié)果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

同步練習(xí)冊(cè)答案