【題目】如圖,A點(diǎn)坐標(biāo)是(﹣2,0),將點(diǎn)A繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)40°,A的對應(yīng)點(diǎn)是A1,將點(diǎn)A1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)40°,A1的對應(yīng)點(diǎn)是A2,將點(diǎn)A2繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)40°,A2的對應(yīng)點(diǎn)是A3,…,按此規(guī)律Ai每次都繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)40°得Ai+1,則A2019的坐標(biāo)是_____.
【答案】(1,).
【解析】
作A3H⊥x軸于H,連接OA3.由360°÷40°=9,推出旋轉(zhuǎn)9次回到點(diǎn)A,由2019÷9=224余數(shù)為3,推出A2019與A3的坐標(biāo)相同,由此進(jìn)行求解.
如圖所示:作A3H⊥x軸于H,連接OA3.
∵360°÷40°=9,
∴旋轉(zhuǎn)9次回到點(diǎn)A,
∵2019÷9=224余數(shù)為3,
∴A2019與A3的坐標(biāo)相同,
在Rt△OA3H中,∵∠A3OH=60°,OA3=2,
∴OH=OA3cos60°=1,A3H=OA3sin60°=,
∴A3(1,),
故答案是:(1,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列條件中不能判定這兩個(gè)三角形相似的是( )
A. ∠A=55°,∠D=35°
B. AC=9,BC=12,DF=6,EF=8
C. AC=3,BC=4,DF=6,DE=8
D. AB=10,AC=8,DE=15,EF=9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)球,分別是紅球和白球,這些球除顏色外都相同,將球攪勻,先從中任意摸出一個(gè)球,恰好摸到紅球的概率為.
(1)求口袋中有幾個(gè)紅球?
(2)先從中任意摸出一個(gè)球,從余下的球中再摸出一個(gè)球,請用列表法或樹狀圖法求兩次摸到的球中一個(gè)是紅球和一個(gè)是白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,A(2,0),B(0,2),C(,0),點(diǎn)P(m,n)為直線AB上一動(dòng)點(diǎn),若∠OPC=30°,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(-1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對稱點(diǎn),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過點(diǎn)F作FE⊥x軸,FG⊥y軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若∠B=30°,AC=6,OA=2,直接寫出陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店張阿姨以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤.通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤.為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com