【題目】為了解某校八年級學(xué)生參加體育鍛煉的情況,隨機調(diào)查了該校部分學(xué)生每周參加體育鍛煉的時間,并進(jìn)行了統(tǒng)計,繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖.
(1)本次共調(diào)查學(xué)生 人;
(2)這組數(shù)據(jù)的眾數(shù)是 ;
(3)請你將圖2的統(tǒng)計圖補充完整;
(4)若該校八年級共有650人,請根據(jù)樣本數(shù)據(jù),估計每周參加體育鍛煉時間為6小時的人數(shù).
【答案】(1)100;(2)5;(3)見解析;(4)182人
【解析】
(1)從兩個統(tǒng)計圖中可得到每周鍛煉時間4小時的人數(shù)20人,占調(diào)查人數(shù)的20%,可求出調(diào)查人數(shù),
(2)求出每周鍛煉5小時的人數(shù),根據(jù)人數(shù)的多少可以確定眾數(shù),
(3)各個組的人數(shù)都確定,即可補全條形統(tǒng)計圖,
(4)樣本估計總體,650人中28%每周鍛煉6小時.
】解:(1)20÷20%=100(人),
故答案為:100.
(2)每周鍛煉5小時的人數(shù):100-8-20-28-12=32(人),因此眾數(shù)是5小時,
故答案為:5.
(3)補全條形統(tǒng)計圖如圖所示:
(4)(人)
估計每周參加體育鍛煉時間為6小時的有182人.
故答案為:(1)100;(2)5;(3)見解析;(4)182人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有4個點:A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).
(1)在正方形網(wǎng)格中畫出△ABC的外接圓⊙M,圓心M的坐標(biāo)是 ;
(2)若EF是⊙M的一條長為4的弦,點G為弦EF的中點,求DG的最大值;
(3)點P在直線MB上,若⊙M上存在一點Q,使得P、Q兩點間距離小于1,直接寫出點P橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預(yù)報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=26cm,DC=18cm ,AD=4cm,動點M以1cm/s的速度從點D向點C運動,動點N從點B以2cm/s的速度向點A運動點M、N同時出發(fā),當(dāng)其中一個動點到達(dá)端點時停止運動,另一個動點也隨之停止運動,設(shè)動點運動時間為t(s),四邊形ANMD的面積y(),y關(guān)于x的函數(shù)解析式并寫出定義域_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果順次連接一個四邊形各邊的中點,得到的新四邊形是矩形,則原四邊形一定是( )
A.平行四邊形B.矩形
C.對角線互相垂直的四邊形D.對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長取最小值時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再填空解題:
①方程x2﹣x﹣6=0的根是x1=3,x2=﹣2,則x1+x2=1,x1x2=﹣6;
②方程2x2﹣7x+3=0的根是x1=,x2=3,則x1+x2=,x1x2=.
根據(jù)以上①②你能否猜出:
如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0,且a、b、c為常數(shù),b2﹣4ac≥0)有兩根x1、x2,那么x1+x2、x1x2與系數(shù)a、b、c有什么關(guān)系?請寫出你的猜想并說明理由.
利用公式法求出方程的根即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC≌△EDC.
(1)若DE∥BC(如圖1),判斷△ABC的形狀并說明理由.
(2)連結(jié)BE,交AC于F,點H是CE上的點,且CH=CF,連結(jié)DH交BE于K(如圖2).求證:∠DKF=∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,且滿足:,長方形在坐標(biāo)系中(如圖1),點為坐標(biāo)系的原點.
(1)求點的坐標(biāo).
(2)如圖2,若點從點出發(fā),以2個單位/秒的速度向右運動(不超過點),點從原點出發(fā),以1個單位/秒的速度向下運動(不超過點),設(shè)兩點同時出發(fā),在它們運動的過程中,四邊形的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com