已知在中,半徑,是兩條平行弦,且,則弦AC的長(zhǎng)為(    )
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在⊙O中,半徑r=5,AB、CD是兩條平行弦,且AB=8,CD=6,則弦AC的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知網(wǎng)格中每個(gè)正方形的邊長(zhǎng)都是1,圖中的陰影圖案是由兩段以格點(diǎn)為圓心,分別以小精英家教網(wǎng)正方形的邊長(zhǎng)和對(duì)角線長(zhǎng)為半徑的圓弧和網(wǎng)格的邊圍成.
(1)計(jì)算圖中陰影部分的面積;
(2)請(qǐng)你在網(wǎng)格中以陰影圖案為基本圖案,借助軸對(duì)稱、平移或旋轉(zhuǎn)設(shè)計(jì)一個(gè)完整的圖案(要求至少含有兩種圖形變換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在⊙O中,AB=4
3
,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.
(1)求圖中陰影部分的面積;
(2)若用陰影扇形OBD圍成一個(gè)圓錐側(cè)面,請(qǐng)求出這個(gè)圓錐的底面圓的半徑.
(3)試判斷⊙O中其余部分能否給(2)中的圓錐做兩個(gè)底面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

材料一:在平面直角坐標(biāo)系中,如果已知A,B兩點(diǎn)的坐標(biāo)為(x1,y1)和(x2,y2),設(shè)AB=t,那么我們可以通過(guò)構(gòu)造直角三角形用勾股定理得出結(jié)論:(x1-x22+(y1-y22=t2
材料二:根據(jù)圓的定義,圓是到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合(其中定點(diǎn)為圓心,定長(zhǎng)為半徑).如果把圓放在平面直角坐標(biāo)系中,我們?cè)O(shè)圓心坐標(biāo)為(a,b),半徑為r,圓上任意一點(diǎn)的坐標(biāo)為(x,y),那么我們可以根據(jù)材料一的結(jié)論得出:(x-a)2+(y-b)2=r2,這個(gè)二元二次方程我們把它定義為圓的方程.比如:以點(diǎn)(3,4)為圓心,4為半徑的圓,我們可以用方程(x-3)2+(y-4)2=42來(lái)表示.事實(shí)上,滿足這個(gè)方程的任意一個(gè)坐標(biāo)(x,y),都在已知圓上.
認(rèn)真閱讀以上兩則材料,回答下列問(wèn)題:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
為圓心,
9
9
為半徑的圓的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
為圓心,
1
1
為半徑的圓的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F(xiàn)為常數(shù))表示的是一個(gè)圓的方程,則D,E,F(xiàn)要滿足的條件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圓上的所有點(diǎn)到點(diǎn)(3,4)的最小距離是
3
3
(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案