【題目】如圖,△ABC內接于⊙O,直徑DE⊥AB于點F,交BC于點 M,DE的延長線與AC的延長線交于點N,連接AM.
(1)求證:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的長.
【答案】(1)見解析;(2)+
【解析】
(1)由垂徑定理可求得AF=BF,可知DE為AB的垂直平分線,可得AM=BM;
(2)連接AO,BO,可求得∠ACB=60°,可求得∠AOF,由DE的長可知AO,在Rt△AOF中得AF,在Rt△AMF中可求得AM,在Rt△ACM中,由,可求得CM,則可求得BC的長.
(1)證明:
∵直徑DE⊥AB于點F,
∴AF=BF,
∴AM=BM;
(2)連接AO,BO,如圖,
由(1)可得 AM=BM,
∵AM⊥BM,
∴∠MAF=∠MBF=45°,
∴∠CMN=∠BMF=45°,
∵AO=BO,DE⊥AB,
∴∠AOF=∠BOF=,
∵∠N=15°,
∴∠ACM=∠CMN+∠N=60°,即∠ACB=60°,
∵∠ACB=.
∴∠AOF=∠ACB=60°.
∵DE=8,
∴AO=4.
在Rt△AOF中,由,得AF=,
在Rt△AMF中,AM==.得BM= AM=,
在Rt△ACM中,由,得CM=,
∴BC=CM+BM=+.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.
(1)當k取何值時,方程有兩個不相等的實數(shù)根?
(2)在(1)的條件下,若k是滿足條件的最小整數(shù),求方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我國古代數(shù)學著作《九章算術》中記載了這樣一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CD⊥AB于點E,AE=1寸,CD=10寸,求直徑AB的長.
請你解答這個問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=CB,AC=10,S△ABC=60,E為AB上一動點,連結CE,過A作AF⊥CE于F,連結BF,則BF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙ O,其外角平分線AD交⊙ O于D,DM⊥ AC于M,下列結論中正確的是 ____________。
①DB=DC; ②AC+AB=2CM;③AC﹣AB=2AM; ④.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的的網(wǎng)格中,給出了以格點(網(wǎng)格線的交點)為端點的線段AB.
(1)將線段AB向上平移5個單位長度,得到線段,畫出線段;連接、,并直接判斷四邊形的形狀;
(2)以點B為旋轉中心,將線段AB順時針旋轉得到線段BC,畫出線段BC,并直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的頂點A,D在直線l上,∠BAD=60°,以點A為旋轉中心將菱形ABCD順時針旋轉α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當MN∥B′D′ 時,解答下列問題:
(1)求證:△AB′M≌△AD′N;
(2)求α的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某禮品店生產(chǎn)的禮品盒分為六個檔次,第一檔(最低檔次)的產(chǎn)品每天生產(chǎn)76件,每件利潤10元,調查表明:生產(chǎn)提高一個檔次的禮品盒,每件利潤增加2元.
(1)若生產(chǎn)的某批禮品盒每件利潤為14元,問生產(chǎn)的是第幾檔次的產(chǎn)品?
(2)由于生產(chǎn)工序不同,禮品盒每提升一個檔次,一天會少生產(chǎn)4件,若生產(chǎn)的某檔次產(chǎn)品一天的利潤為1080元,問生產(chǎn)的是第幾檔次的產(chǎn)品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=x2+bx﹣3(b是常數(shù))與x軸交與A,B兩點,與y軸交于點C,且點A坐標為(﹣1,0).
(1)求該拋物線的解析式和對稱軸;
(2)如圖2,拋物線的對稱軸與x軸交于點D,在對稱軸上找一個點E,使△OAC與△ODE相似,直接寫出點E的坐標;
(3)如圖3,平行于x軸的直線與拋物線交于P(x1,y1),Q(x2,y2)兩點,與直線BC交于點N(x3,y3).若x1<x2<x3時,結合圖象,求x1+x2+x3的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com