【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA,EC.

(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;

(2)如圖2,若點P在線段AB的中點,連接AC,判斷ACE的形狀,并說明理由;

(3)如圖3,若點P在線段AB上,連接AC,當(dāng)EP平分AEC時,設(shè)AB=a,BP=b,求a:b及AEC的度數(shù).

【答案】(1)證明見解析;(2)ACE是直角三角形;(3):1,45°

【解析】

試題分析:(1)由正方形的性質(zhì)證明APE≌△CFE,可得結(jié)論;

(2)分別證明PAE=45°和BAC=45°,則CAE=90°,即ACE是直角三角形;

(3)分別計算PG和BG的長,利用平行線分線段成比例定理列比例式得:,即,解得:a=b,得出a與b的比,再計算GH和BG的長,由角平分線的逆定理得:HCG=BCG,由平行線的內(nèi)錯角得:AEC=ACB=45°.

試題解析:(1)四邊形ABCD和四邊形BPEF是正方形,AB=BC,BP=BF,AP=CF,在APE和CFE中,AP=CF,P=F,PE=EF,∴△APE≌△CFE,EA=EC;

(2)ACE是直角三角形,理由是:

如圖2,P為AB的中點,PA=PB,PB=PE,PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即ACE是直角三角形;

(3)設(shè)CE交AB于G,EP平分AEC,EPAG,AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,PECF,,即,解得:a=b,a:b=:1,作GHAC于H,∵∠CAB=45°,HG=AG=(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,GH=GB,GHAC,GBBC,∴∠HCG=BCG,PECF,∴∠PEG=BCG,∴∠AEC=ACB=45°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向南騎行2 km,到達A村,繼續(xù)向南騎行3 km到達B村,然后向北騎行9 km到達C村,最后回到郵局.

(1)以郵局為原點,以向北為正方向,用0.5 cm表示1 km,畫出數(shù)軸,并在該數(shù)軸上表示出A,BC三個村莊的位置.

(2)C村離A村有多遠?

(3)郵遞員一共騎了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)在一次蠟燭燃燒試驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度 (厘米)與燃燒時間 (小時)之間的關(guān)系如圖所示,其中乙蠟燭燃燒時之間的函數(shù)關(guān)系式是.

(1)甲蠟燭燃燒前的高度是_________厘米,乙蠟燭燃燒的時間是________小時.

(2)求甲蠟燭燃燒時之間的函數(shù)關(guān)系式.

(3)求出圖中交點的坐標(biāo),并說明點的實際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個頂點的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請在圖中,畫出ABC向左平移6個單位長度后得到的△A1B1C1;

(2)以點O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為4,點是對角線的中點,點、分別在、邊上運動,且保持,連接,.在此運動過程中,下列結(jié)論:①;②;③四邊形的面積保持不變;④當(dāng)時,,其中正確的結(jié)論是(

A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE∥BF∠1與∠2互補.

1)試說明:FG∥AB;

2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】線段AB和線段CD交于點O,OE平分∠AOC,F為線段AB上一點(不與點A和點O重合)過點F FG//OE,交線段CD于點G,若∠AOD=110°,則∠AFG的度數(shù)為_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東西向的馬路上有一個巡崗?fù)?/span>,巡崗員從崗?fù)?/span>出發(fā)以速度勻速來回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負,巡邏情況記錄如下:(單位:千米)

第一次

第二次

第三次

第四次

第五次

第六次

第七次

1)第幾次結(jié)束時巡邏員甲距離崗?fù)?/span>最遠?距離有多遠?

2)甲巡邏過程中配置無線對講機,并一直與留守在崗?fù)?/span>的乙進行通話,問甲巡邏過程中,甲與乙保持通話的時長共多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號得正,異號得負,得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為

1)探究:解不等式

2)應(yīng)用:不等式 的解集是

查看答案和解析>>

同步練習(xí)冊答案