【題目】已知:如圖,△ABC中,∠A=90°,BC的垂直平分線DE交BC于點(diǎn)E,交AC于點(diǎn)D.
(1)若∠C=35°,求∠DBA的度數(shù);
(2)若△ABD的周長為30,AC=18,求AB的長.
【答案】
(1)解:∵DE是BC的垂直平分線,
∴CD=BD,
∴∠CBD=∠C=35°,
∴∠ADB=∠C+∠CBD=70°,
∵△ABC中,∠A=90°,
∴∠DBA=90°﹣∠BDA=20°;
(2)解:∵△ABD的周長為30,CD=BD,
∴AB+AD+BD=AB+AD+CD=AB+AC=30,
∵AC=18,
∴AB=30﹣18=12.
【解析】(1)抓住題中關(guān)鍵的已知條件BC的垂直平分線DE,得出CD=BD,可求出∠CBD、∠C的度數(shù),再根據(jù)直角三角形兩銳角互余,求出∠ABC的度數(shù),即可求得∠DBA的度數(shù)。
(2)由(1)的證明過程可知,CD=BD,因此△ABD的周長=AC+AB=30,即可求出AB的長。
【考點(diǎn)精析】本題主要考查了三角形的內(nèi)角和外角和線段垂直平分線的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,為邊的中點(diǎn).將繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,過點(diǎn)作交于點(diǎn),連接、交于點(diǎn).現(xiàn)有下列結(jié)論:①;②;③;④點(diǎn)為的外心.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】空氣是由多種氣體混合而成的,為了直觀地介紹空氣各成分的百分比,最適合使用的統(tǒng)計(jì)圖是( )
A.扇形圖B.直方圖C.條形圖D.折線圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司共有三個(gè)部門,根據(jù)每個(gè)部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計(jì)表和扇形圖.
各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計(jì)表
部門 | 員工人數(shù) | 每人所創(chuàng)的年利潤/萬元 |
A | 5 | 10 |
B | 8 | |
C | 5 |
(1)①在扇形圖中,C部門所對(duì)應(yīng)的圓心角的度數(shù)為___________;
②在統(tǒng)計(jì)表中,___________,___________;
(2)求這個(gè)公司平均每人所創(chuàng)年利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,最適合采用全面調(diào)查的是( )
A.對(duì)南寧市中學(xué)生在“停課不停學(xué)”期間,每天鍛煉時(shí)間的調(diào)查
B.對(duì)南寧市市民知曉“禮讓斑馬線”行車要求情況的調(diào)查
C.對(duì)端午節(jié)期間市場(chǎng)上粽子的質(zhì)量情況調(diào)查
D.對(duì)你所在的班級(jí)同學(xué)的身高情況的調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在同一平面內(nèi)三條直線a、b、c,若a∥c,b∥c,則a與b的位置關(guān)系是( )
A.a⊥bB.a⊥b或a∥bC.a∥bD.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒 cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,若四邊形QPCP′為菱形,則t的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com