【題目】已知數(shù)軸上三點對應(yīng)的數(shù)分別為-10,3,點為數(shù)軸上任意一點,其對應(yīng)的數(shù)為

1的長為_______;

2)如果點到點、點的距離相等,那么的值是_______

3)若點到點、點的距離之和是8,那么的值是_______

4)如果點以每分鐘1個單位長度的速度從點向左運動,同時點和點分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)分鐘時點P到點、點的距離相等,那么的值是_______

【答案】4 1 -35 4

【解析】

1的長即求MN的絕對值;

(2)點到點、點的距離相等,P為MN的中點;

(3)若點到點、點的距離之和是8,對PM左邊,PMN之間和PN右邊進(jìn)行分類討論.

4)分別根據(jù)①點M和點N在點P同側(cè)時,②點M和點N在P異側(cè)時進(jìn)行解答.

1)據(jù)圖可得:

2)∵點到點、點的距離相等,即P為MN的中點.

P表示的

3)當(dāng)PM左邊時,PM+PN=,解得;

當(dāng)PMN之間,PM+PN=MN=48,舍去;

當(dāng)PN右邊時,PM+PN= ,解得.

4)設(shè)運動t分鐘時,P到MN的距離相等.

由題意可以得,,

①當(dāng)點M和點N在點P同側(cè)時,點M和點N重合,

,解得,符合題意.

②當(dāng)點M和點N在點P異側(cè)時,點M位于點P左側(cè),點N位于點P的右側(cè)(因為三個點都向左運動,出發(fā)時點M在點P左側(cè),且點M的運動速度大于點P的運動速度,所以點M永遠(yuǎn)位于點P的左側(cè))

解得符合題意.

∴綜上所述的值是4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】筐白菜,以每筐為標(biāo)準(zhǔn),超過和不足的千克數(shù)分別用正、負(fù)數(shù)來表述,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值

筐數(shù)

1筐白菜中,最重的一筐和最輕的一筐重_______________

2筐白菜實際總重量與標(biāo)準(zhǔn)總重量相比是超過還是不足?超過或不足多少千克?

3)若白菜每千克售價元,則出售這筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鴻運達(dá)酒店客房部有三人間、雙人間和單人間客房收費數(shù)據(jù)如下表:為吸引客源在五一黃金周進(jìn)行優(yōu)惠大酬賓,凡團(tuán)體入住一率五折優(yōu)惠。一個50人的旅游團(tuán)在52日到該酒店住宿,租住了一些三人間、雙人間普通客房,并且每個客房剛好住滿,一天一共花去住宿費1510元。

普通間(元//天)

豪華間(元//天)

貴賓間(元//天)

三人間

50

100

500

雙人間

70

150

800

單人間

100

200

1500

1)該旅游團(tuán)三人間,雙人間普通客房各住了多少間?

2)如果你作為旅游團(tuán)長,你認(rèn)為上面這種住宿方式是不是費用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點時,甲離終點還有300米

其中正確的結(jié)論有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.

理解:

(1)如圖1,已知RtABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);

(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.

求證:BD是四邊形ABCD的“相似對角線”;

(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若EFG的面積為2,求FH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點D在線段BC上時,

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在《科學(xué)》課上,老師講到溫度計的使用方法及液體的沸點時,好奇的王紅同學(xué)準(zhǔn)備測量食用油的沸點,已知食用油的沸點溫度高于水的沸點溫度(),王紅家只有刻度不超過的溫度計,她的方法是在鍋中倒入一些食用油,用煤氣灶均勻加熱,并每隔測量一次鍋中油溫,測量得到的數(shù)據(jù)如下表:

時間

0

10

20

30

40

油溫

10

30

50

70

90

王紅發(fā)現(xiàn),燒了時,油沸騰了,則下列說法不正確的是( )

A. 沒有加熱時,油的溫度是

B. 加熱,油的溫度是

C. 估計這種食用油的沸點溫度約是

D. 每加熱,油的溫度升高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在綜合與實踐課上,同學(xué)們以“一個含的直角三角尺和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線和直角三角形,,,.

操作發(fā)現(xiàn):

1)在如圖1中,,求的度數(shù);

2)如圖2,創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),說明理由;

實踐探究:

3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,將如圖中的圖形繼續(xù)變化得到如圖,平分,此時發(fā)現(xiàn)又存在新的數(shù)量關(guān)系,請直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,點 M 是正方形 ABCD 的邊 BC 上一點,點 N 是 CD 延長線上一點, 且BM=DN,則線段 AM 與 AN 的關(guān)系.

(2)如圖②,在正方形 ABCD 中,點 E、F分別在邊 BC、CD上,且∠EAF=45°,判斷 BE,DF,EF 三條線段的數(shù)量關(guān)系,并說明理由.

(3)如圖③,在四邊形 ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,點E、F分別在邊 BC、CD 上,且∠EAF=45°,若 BD=5,EF=3,求四邊形 BEFD 的周長.

查看答案和解析>>

同步練習(xí)冊答案