【題目】商場(chǎng)某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)降價(jià)的措施.經(jīng)調(diào)查發(fā)現(xiàn):每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件.設(shè)每件商品降價(jià)元.
(1)商場(chǎng)日銷售量為_____________件,每件商品盈利_______________元(用含的代數(shù)式表示)
(2)根據(jù)上述條件,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元.
【答案】(1),;
(2)每件商品降價(jià)20元時(shí),商場(chǎng)日盈利可達(dá)到2100元.
【解析】
每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件.如果每件商品降價(jià)元,則多售出件;盈利即每件盈利乘以銷售件數(shù),再使其等于2100,將題轉(zhuǎn)化為二元一次方程求解.
解:(1)根據(jù)每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件可知日銷售量為
根據(jù)計(jì)劃每件盈利50元可知每降價(jià)1元后每件商品盈利.
(2)依題意得:
解這個(gè)方程,得
∵要盡快減少庫(kù)存
∴
答: 每件商品降價(jià)20元時(shí),商場(chǎng)日盈利可達(dá)到2100元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0
(Ⅰ)當(dāng)m=時(shí),求方程的實(shí)數(shù)根;
(Ⅱ)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=.
(1)求反比例函數(shù)的解析式
(2)連接OB,求△AOB的面積
(3) 根據(jù)圖象直接寫出當(dāng)時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一元二次方程ax2+bx+c=0(a≠0),下列說法:①a+c=0,方程ax2+bx+c=0,有兩個(gè)不相等的實(shí)數(shù);②若方程ax2+bx+c=0有兩個(gè)不相等的實(shí)根.則方程cx2+bx+a=0也一定有兩個(gè)不相等的實(shí)根;③若c是方程ax2+bx+c=0的一個(gè)根,則一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一個(gè)根,則一定有b2-4ac=(2am+b)2成立,其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)()的與的部分對(duì)應(yīng)值如下表.則下列判斷中正確的是( )
… | -1 | 0 | 1 | 2 | … | |
… | -5 | 1 | 3 | 1 | … |
A.拋物線開口向上B.拋物線與軸交于負(fù)半軸
C.當(dāng)時(shí),D.方程的正根在2和3之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)請(qǐng)直接寫出點(diǎn)A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);
(3)如圖(2),F為直線AC上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P的橫坐標(biāo)為2,將點(diǎn)A繞點(diǎn)P旋轉(zhuǎn),使它的對(duì)應(yīng)點(diǎn)B恰好落在x軸上(不與A點(diǎn)重合);再將點(diǎn)B繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)C.
(1)直接寫出點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△AOB 中,∠AOB=90,OA=3,OB=4.將△AOB 沿 x 軸依次以點(diǎn) A、B、O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②圖③、…,則旋轉(zhuǎn)得到的圖⑧的直角頂點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com