【題目】(1)己知,如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為弧BC上一動點(diǎn),請?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為弧BC上一動點(diǎn),請?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為弧BC上一動點(diǎn),請?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論不需證明.
【答案】(1)PA=PB+PC;(2)PA=PC+PB;(3)PA=PB+PC.
【解析】
試題分析:(1)結(jié)論:PA=PB+PC.延長BP至E,使PE=PC,連接CE,證明△PCE是等邊三角形.利用CE=PC,∠E=∠3=60°,∠EBC=∠PAC,得到△BEC≌△APC,所以PA=BE=PB+PC;
(2)結(jié)論:PA=PC+PB.過點(diǎn)B作BE⊥PB交PA于E,證明△ABE≌△CBP,所以PC=AE,可得PA=PC+PB.
(3)結(jié)論:PA=PB+PC.在AP上截取AQ=PC,連接BQ可證△ABQ≌△CBP,所以BQ=BP.又因?yàn)?/span>∠APB=30°.所以PQ=PB,PA=PQ+AQ=PB+PC.
試題解析:
(1)延長BP至E,使PE=PC,連接CE,如圖1,∵A、B、P、C四點(diǎn)共圓,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,PE=PC,∴△PCE是等邊三角形,∴CE=PC,∠E=60°;
又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP為等邊三角形,∴CE=PC,AC=BC,在△BEC和△APC中,∵CE=PC,∠BEC=∠ACP,BC=AC,∴△BEC≌△APC(SAS),∴PA=BE=PB+PC;
(2)過點(diǎn)B作BE⊥PB交PA于E,如圖2,∵∠1+∠2=∠2+∠3=90°
∴∠1=∠3,∴∠APB=45°,∴BP=BE,∴PE=PB,在△ABE和△CBP中,∵BE=BP,∠1=∠3,AB=BC,∴△ABE≌△CBP(SAS),∴PC=AE,∴PA=AE+PE=PC+PB;
(3)PA=PC+PB.
證明:過點(diǎn)B,作BM⊥AP,在AP上截取AQ=PC,連接BQ,如圖3,∵∠BAP=∠BCP,AB=BC,在△ABQ和△CBP中,∵AQ=PC,∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP(SAS),∴BQ=BP,∴MP=QM,又∵∠APB=30°,∴cos30°=,∴PM=PB,∴PQ=PB,∴PA=PQ+AQ=PC+PB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字:我們知道對于一個(gè)圖形,通過不同的方法計(jì)算圖形的面積時(shí),可以得到一個(gè)數(shù)學(xué)等式,例如由圖a可以得到a2+3ab+2b2=(a+2b)(a+b).請回答下列問題:
(1)寫出圖b中所表示的數(shù)學(xué)等式是 .
(2)試畫出一個(gè)長方形,使得用不同的方法計(jì)算它的面積時(shí),能得到2a2+3ab+b2=(2a+b)(a+b).
(3)課本68頁練一練,有一題:如圖c,用四塊完全相同的長方形拼成正方形,用不同的方法,計(jì)算圖中陰影部分的面積,你能發(fā)現(xiàn)什么?(用含有x、y的多少表示) .
(4)通過上述的等量關(guān)系,我們可知:
當(dāng)兩個(gè)正數(shù)的和一定時(shí),它們的差的絕對值越小則積越(填“大”或“小”).
當(dāng)兩個(gè)正數(shù)的積一定時(shí),它們的差的絕對值越小則和越(填“大”或“小”).
(5)利用上面得出的結(jié)論,對于正數(shù)x,求:
①代數(shù)式:2x+ 的最小值是;
②代數(shù)式:x(6﹣x)的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,不可能成為一個(gè)三角形三邊長的是( )
A.2,3,4
B.5,7,7
C.5,6,12
D.6,8,10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是△ABC的邊BC上的高,E、F分別是AB、AC的中點(diǎn),AC=13、AB=20、BC=21.
(1)求四邊形AEDF的周長;
(2)求AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)相似多邊形的面積之比是1:4,則這兩個(gè)相似多邊形的周長之比是( )
A.1:2
B.1:4
C.1:8
D.1:16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長度的半圓O1 , 半圓O2 , 半圓O3 , …,組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,速度為每秒 個(gè)單位長度,則第101秒時(shí),點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組9名學(xué)生參加“數(shù)學(xué)競賽”,他們的得分情況如表:
人數(shù)(人) | 1 | 3 | 4 | 1 |
分?jǐn)?shù)(分) | 80 | 85 | 90 | 95 |
那么這9名學(xué)生所得分?jǐn)?shù)的眾數(shù)和中位數(shù)分別是( )
A.90,90
B.90,85
C.90,87.5
D.85,85
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com